visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-01-18 14:00 
일시 Jan. 18(Tue), 2pm-3pm 
장소 KI bldg. 5th fl. Room B501 & Zoom 
연사 YoungJu Jo (Stanford University) 

[Seminar]

18 Jan 2022, Tue, 2pm-3pm, KI bldg. 5th fl. Room B501

Zoom: https://kaist.zoom.us/j/89586032430

회의 ID: 895 860 324 30

 

Data-driven interrogation of biological dynamics:
from subcellular interactions to neuronal networks in vivo

 

 

YoungJu Jo

PhD Candidate in Applied Physics, Deisseroth Laboratory, Stanford University

 

 

Biological systems are nonlinear dynamical systems consisting of heterogeneous entities. Understanding the logic of the complex spatiotemporal dynamics in such systems, robustly implementing specific biological functions, may require new approaches beyond the traditional hypothesis-driven experimental designs. Here we present a data-driven approach, enabled by high-throughput experimental and computational technologies, across multiple scales. We first discuss a computational imaging technique for simultaneously visualizing multiple aspects of subcellular dynamics [1, 2], its potential combination with molecular optogenetics to study the cell signaling networks, and the remaining challenges in these systems. Then we turn to neuronal networks in behaving animals where high-dimensional neural population activity could be reliably measured and perturbed over extended time. Synergizing with recent technical advances, we propose and experimentally demonstrate a unified deep learning framework to identify the underlying neural dynamical systems, reverse-engineer the neural computation implemented by the dynamics, and design spatiotemporally patterned optogenetic stimulation for naturalistic manipulation of animal behavior [3]. Application of this framework to the mouse habenular circuitry reveals cell-type-specific reward history coding implemented by line attractor dynamics [4].

 

References:

1. Jo*, Park* et al. Science Advances 3(8), e1700606, 2017.

2. Jo*, Cho*, Park* et al. Nature Cell Biology 23, 1329–1337, 2021.

3. Jo et al. in preparation.

4. Sylwestrak*, Vesuna*, Jo* et al. in revision.

 

문의: 박용근 교수 (내선:2514)

 

 

번호 날짜 장소 제목
466 2019-10-15 16:00  #1323, E6-2  Moiré superlattices and graphene quasicrystal file
465 2018-10-15 16:00  #1323, E6-2  Universal properties of macroscopic current-carrying systems file
464 2023-10-11 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP seminar] Particle Physics with Neutrinos file
463 2023-10-11 16:00  E6-2, Rm2502  [High Energy Theory Seminar] Axion Magnetic Resonance
462 2018-10-11 16:00  #1323, E6-2  Dirac electrons in a graphene quasicrystal file
461 2023-10-19 11:00  E6-2 #1322  Emergent functionalities of iridium oxide films with different growth orientation file
460 2022-10-07 11:00  E6-2 #1323  [Update 세미나 영상] (응집물리 세미나) Competing orders in a vanadium-based kagome metal monolayer file
459 2022-10-06 13:00  E6 #1323  Counting States with Global Symmetry
458 2022-10-04 16:00  E6 #2501  Distinguishing 6d (1, 0) SCFTs
457 2022-10-28 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Machine-Learning-Guided Prediction models and Materials discovery for high Tc cuprates file
456 2016-10-27 16:00  #1323(E6-2)  Terahertz Metal Optics
455 2022-10-27 16:00  E6-2 #1323  (광학분야 세미나) Cavity optomechanical systems for quantum transduction
454 2022-10-26 10:00  E6-2 #2502  Replica Higher-Order Topology of Hofstadter Butterflies in Twisted Bilayer Graphene
453 2019-10-25 15:00  #1323, E6-2  Physics Seminar file
452 2016-10-18 15:00  E6-2. 1st fl. #1323  “Hybrid quantum systems with mechanical oscillators”
451 2016-10-18 13:30  1st fl. #1323(E6-2)  "Visualization of oxygen vacancy in motion and the interplay with electronic conduction"
450 2016-10-17 11:00  #1323,(E6-2, 1st fl.)  IMS and examples of the studies on optoelectronic materials
449 2020-10-16 16:00  https://kaist.zoom.us/j/89198078609  Hidden room-temperature ferroelectricity in CaTiO3 revealed by a metastable octahedral rotation pattern file
448 2020-10-16 14:30  https://kaist.zoom.us/j/89198078609  Nanoscale magnetic resonance detection towards nano MRI file
447 2020-10-15 16:00  (https://kaist.zoom.us/j/93997220310)  Towards resource-efficient and fault-tolerant quantum computation with nonclassical light