visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2017-09-26 11:00 
일시 Sep. 26 (Tue.), 11AM 
장소 #1323 (E6-2. 1st fl.) 
연사 Dr. Yukiaki Ishida / ISSP, University of Tokyo 

Time-resolved ARPES study of Dirac and topological materials

 Dr. Yukiaki Ishida / ISSP, University of Tokyo

 Sep. 26 (Tue.), 11AM

#1323 (E6-2. 1st fl.)

 

 

Time- and angle-resolved photoemission spectroscopy (TARPES) has become a powerful tool to investigate the non-equilibrated states and dynamics of matter from an electronic structural point of view. Being a surface sensitive method, TARPES has also opened pathways to explore the ultrafast phenomena occurring on the edge of matter. We present investigations done on Dirac and topological materials by using a TARPES apparatus that achieves the energy resolution of 10.5 meV and high stability [1].

       1. Classification of the topological phase of matter:

In 2008, it was demonstrated that there are two classes in non-magnetic insulators. A topological twist can be defined for the bulk band structure, and those that have the twist belong to the topologically-nontrivial class. The effect of the twist appears on the edge: On surface of topological insulators (TIs), novel Dirac-type dispersion is formed. Thus, the classification can be done by investigating whether the surface Dirac dispersion exists or not. 

2. Functioning surface of topological insulators by light:

We discovered that surface photo-voltage (SPV) can emerge on TIs when the bulk is sufficiently insulating [5]. That is, TIs now meet the well-known opto-electronic function of semiconductors. We discuss that the SPV effect can be utilized to generate spin-polarized current on TI surface, and present the ongoing research towards this end. 

3. Ultrafast dynamics of Dirac electrons:

Massless Dirac fermions have the ability to absorb light of whatever color. Thus, Dirac fermions are prospective in opto-electronics. In fact, ultrashort pulses of any color can be created by using TIs and graphitic materials. Broad-band lasing may also be realized if a population inversion can be formed across the Dirac point. Firm understanding of the Dirac electron dynamics thus becomes of paramount importance. We show that an inverted population is realized in the surface Dirac band of a TI Sb2Te3 [6]. Dynamics being either within or beyond a simple two-temperature model scheme is observed in layered Dirac semimetals such as graphite and SrMnBi2 [7].

[1] Y. Ishida et al., Rev. Sci. Instrum. 85, 123904 (2014); Y. Ishida et al., Sci. Rep. 6, 18747 (2016). 

[3] P. Zhang et al., Phys. Rev. Lett. 118, 046802 (2017). 

[3] S. Kim et al., Phys. Rev. Lett. 112, 136802 (2014). 

[4] I. Belopolski et al., Nature Commun. 7, 13643 (2016). 

[5] Y. Ishida et al., Sci. Rep. 5, 8160 (2015); M. Neupane et al., Phys. Rev. Lett. 115, 116801 (2015).

[6] S. Zhu et al., Sci. Rep. 5, 13213 (2015). 

[7] Y. Ishida et al., Sci. Rep. 1, 64 (2011); Y. Ishida et al., Phys. Rev. B 93, 100302(R) (2016). 

 

번호 날짜 장소 제목
382 2018-11-09 14:30  E6-2. 1st fl. #1323  Moiré superlattices – from twisted bilayer graphene to quasicrystal file
381 2017-04-28 14:30  E6-2. 1st fl. #1323  Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion
380 2018-12-11 16:00  E6-2. 1st fl. #1323  Natural compact representation of Matsubara Green’s functions: applications to analytic continuation and quantum many-body simulations file
379 2017-09-22 13:00  E6-2. 1st fl. #1323  Superconductor-metal-insulator transition in thin Tantalum films file
378 2018-10-12 14:30  E6-2. 1st fl. #1323  Quantum Advantage in Learning Parity with Noise file
377 2017-05-12 13:30  E6-2. 1st fl. #1323  Topological Dirac insulator
376 2017-09-22 14:30  E6-2. 1st fl. #1323  Quantum Electronic Transport in Graphene Hybrid Nanostructures file
375 2019-11-01 16:00  E6-2. 1st fl. #1323  Electron transport through weak-bonded contact metal with low dimensional nano-material file
374 2019-09-27 14:30  E6-2. 1st fl. #1323  Spin-charge conversion in topological insulators for spintronic applications file
373 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
372 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
371 2019-03-29 16:00  E6-2. 1st fl. #1323  Coherent Quantum Control and Magnetism on atoms – Trapped ion and ESR STM file
370 2019-04-19 16:00  E6-2. 1st fl. #1323  Graphene and hBN heterostructures file
369 2019-04-19 14:30  E6-2. 1st fl. #1323  A family of finite-temperature electronic phase transitions in graphene multilayers file
368 2018-12-26 16:00  E6-2. 1st fl. #1323  Brane-like defect in 3D toric code file
367 2017-06-02 14:30  E6-2. 1st fl. #1323  Quasiparticle Interference and Fourier transform scanning tunneling spectroscopy in WTe2 (Weyl semimetal) file
366 2016-04-05 16:00  E6-2. 1st fl. #1322  A new impurity solver for multi-orbital systems: adaptive truncation of the Hilbert space
365 2015-09-07 15:00  E6-2. 1st fl. #1318  Advanced Optical Materials and Devices at NRL
364 2016-09-21 16:00  E6-2. #2502(2nd fl.)  Entanglement probe of two-impurity Kondo physics
363 2016-09-29 16:00  E6-2. #2501(2nd fl.)  Exploring the phase diagram of BaBiO3: epic voyage of just another bad trip?