visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Geometry, Algebra, and Quantum Field Theory

2022.05.17 18:02

admin 조회 수:655

날짜 2022-05-18 16:00 
일시 May. 18(Wed), 4pm 
장소 E6-2. #1323 & Zoom 
연사 Dr.Heeyeon Kim (Rutgers University, Department of Physics and Astronomy) 
김희연 박사의 세미나를 아래와 같이 안내드립니다.
 

Title: Geometry, Algebra, and Quantum Field Theory 

Speaker: Dr.Heeyeon Kim  (Rutgers University, Department of Physics and Astronomy )
Date: May. 18(Wed), 4pm

Place : E6-2. 1st fl. #1323

[Zoom 회의 참가]
 
회의 ID: 870 9940 6103

 

Abstract: 

Quantum Field Theory (QFT) is a powerful description of a wide range of physical phenomena, from the interaction of elementary particles to exotic phases of matter. However, despite its remarkable success, the traditional framework of QFT based on perturbation theory remains incomplete. One of the most important challenges is to build a mathematical foundation of QFT that enables a systematic study of strongly interacting systems.
 
In this talk, I will introduce String Theory as a unique tool that connects various ideas in quantum physics and modern mathematics. Regardless of its phenomenological role, this framework provides novel insights into both disciplines. Dualities in string theory predict extremely non-trivial conjectures identifying two a priori distinct structures in mathematics. Conversely, ideas in modern mathematics have led to new advances in QFT that allows a deeper understanding of its non-perturbative structures.
 
I will discuss recent development in building a unifying tool that plays a central role in establishing this connection. In particular, I will focus on the interplay between supersymmetric QFTs and problems in enumerative geometry, which is a branch in modern mathematics that counts the number of solutions to fundamental geometric questions. The interaction leads to a variety of new applications across physics and mathematics, from black-hole micro-state counting problems to the classification of topological spaces.
번호 날짜 장소 제목
387 2018-05-11 14:30  E6-2. 1st fl. #1323  Disordered Floquet topological insulators file
386 2016-12-09 16:00  #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
385 2022-05-13 14:30  Zoom webinar  Topological Superconducting Spintronics Towards Zero-Power Computing Technologies file
384 2021-07-29 14:00  Online seminar  Gravitationally Induced Dark Sector and Inflationary Dynamics file
383 2015-12-11 13:30  E6-2, #1323  Quantum spin liquid in the 1/3 depleted triangular lattice Ba3(Ru1-xIrx)Ti2O9
382 2016-03-11 13:30  E6-2. 1st fl. #1501  Topological phases of matter in nonequilibrium: Topology of the Wannier-Stark ladder
381 2018-11-01 16:00  #1323, E6-2  Direct holography from a single snapshot file
380 2022-08-18 10:00  E6-1 #1323  Disorder-driven phase transition in the second-order non-Hermitian skin effect
379 2023-04-27 11:00  E6-2 #1322  Inverse Shapiro steps and coherent quantum phase slip in superconducting nanowires
378 2015-07-16 16:00  E6-2, 1318  Next-generation ultrafast laser technology for nonlinear optics and strong-field physics
377 2018-10-26 16:00  #1323, E6-2  Coexisting triple-point and nodal-line topological magnons and thermal Hall effect in pyrochlore iridates file
376 2017-03-24 14:30  #1323 (1st fl. E6-2).  Topological Dynamics
375 2015-10-15 10:00  E6-2, 5th fl. #5318  Development of Large-Bore, High Field Magnets at the NHMFL
374 2023-06-22 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP Seminar] The muon g-2 puzzle file
373 2016-05-19 15:00  May 19, 2016 (Thur.) 3PM,  The CERN Resonant WISP Search: Development, Results and Lesson-Learned
372 2016-07-08 11:00  #1323(E6-2. 1st fl.)  Isostatic magnetism
371 2015-11-23 13:30  E6-2, #1323  What's Beyond the Standard Model? Lessons from Run I and what might come in Run II
370 2017-02-01 14:00  #1323(E6-2. 1st fl.)  Quantum electron optics using flying electrons
369 2019-09-10 15:00  E6-2. 1st fl. #1323  Two-Stage Kondo Effect file
368 2017-11-03 14:30  #1323 (1st fl., E6-2.)  Quantum Resistor-Capacitor Circuit with Majorana Edge States file