visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-05-26 16:00 
일시 4pm, 26th May 
장소 E6 1323 
연사 황민수 (Department of Physics, Korea University) 
* Title: Topological photonic devices
 
* Speaker: 황민수 (Department of Physics, Korea University)
 
* Date: 4pm, 26th May
 
* Place: E6 1323 (Available seats can be limited because of the COVID situation.)
 
* Abstract
Nanophotonics deals with a control of light at the nanoscale being closely connected with the rapid advances. Properly engineered nanostructures allow the subwavelength propagation of light and its strong confinement in nanowaveguides and nanocavities, making possible the field enhancement and lasing. Recent developments in the physics of photonic topological insulators (PTIs) and bound states in the continuum (BICs) allowed to advance the field of nanophotonics and introduce novel all-dielectric nanostructures and nanolasers empowered by topology and interference effects. Optical BICs have provided a useful way to suppress out-of-plane losses and enhance quality factor (Q factor) in an infinite periodic structure, as a result of destructive mode inference in the far field. The intrinsic topological nature of BICs enables strong optical responses or low-power operation to be achieved. Exploiting long-lived, spatially-confined BICs has emerged from the numerous approaches considered as a promising route to boost nanophotonic Q factors. Moreover, in photonic systems, light propagation without backscattering and defect/imperfection-immune operation has been pursued to develop an ideal light source. Such distinctive features are considered particularly important in nanophotonic devices that are sensitive to small perturbations. After a new branch of optics, called “photonic topological insulators”, appeared and grew rapidly, controlling the topological phases of photonic structures has emerged as a novel manipulation of light. Here, the operational mechanisms, optical characterizations, and practical applications of photonic crystals based on BICs and PTIs are outlined. Their scientific and engineering challenges and results are also discussed.
번호 날짜 장소 제목
387 2019-07-10 16:00  Academic Cltural Complex (E9) 5층 스카이라운지  Public Lectures file
386 2019-07-16 16:00  Rm. 1323 (E6-2)  2019 Physics Distinguished Lecture file
385 2019-12-18 16:00  #1323, E6-2  Road to Higher Tc Superconductivity file
384 2016-06-14 15:00  #1323 (E6-2 1st fl.)  No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets
383 2018-11-21 15:00  #1323, E6-2  Engineering topological quantum physics at the atomic scale file
382 2022-04-08 11:00  E6-1 #1323  (응집물리 세미나) Flat-surface-assisted physical phenomena occurring in single crystal metal thin film file
381 2019-10-29 10:00  #1323 (E6-2, 1st fl.)  Unconventional Spin Transport in Quantum Materials file
380 2021-02-02 14:30  Zoom  Quantum- & Nano-Photonics 세미나(Integrated Nanophotonics with Metamaterials, Microcomb, and Atomic Systems) file
379 2018-11-23 15:00  E6-2. 2st fl. #2501  Entanglement string and Spin Liquid with Holographic duality file
378 2018-06-22 10:00  E6-6, Lecture Room 119 (1F)  Success in Research Career file
377 2016-04-18 15:30  KI빌딩(E4), 강의실 B501 (5F)  First Principles Approaches for Intermolecular Interactions: From Gas-Phase Dimers to Liquid Water and Molecular Crystal Polymorphism file
376 2020-12-02 10:00  Zoom  Recent progress in Axion Dark Matter eXperiment (ADMX) technology file
375 2020-11-17 12:00  Online(Zoom)  Quantum- & Nano-Photonics" 세미나 시리즈 file
374 2023-05-15 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  Role of dark Higgs boson in DM physics and cosmology file
373 2019-10-15 16:00  #1323, E6-2  Moiré superlattices and graphene quasicrystal file
372 2017-08-16 16:00  #1322 (E6-2. 1st fl.)  Phonon-driven spin-Floquet valleytro-magnetism file
371 2023-07-14 11:00  E6-2 #1501  Interfaces engineering of thin film oxides
370 2019-08-14 16:00  Rm. 1323, E6  Quantum Optics, at the heart of quantum metrology and quantum information file
369 2019-10-17 16:00  #1323, E6-2  Top down manipulation of Waves : From Metamaterials, Correlated Disorder, Quantum Analogy, to Digital Processing file
368 2018-12-27 16:00  E6-2. 1st fl. #1323  Quantum Innovation (QuIN) Laboratory file