visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Quantum electron optics using flying electrons

2017.01.26 23:43

Physics 조회 수:2839

날짜 2017-02-01 14:00 
일시 Feb. 1 (Wed.), 2p.m. 
장소 #1323(E6-2. 1st fl.) 
연사 Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo 

Quantum electron optics using flying electrons

 

Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo

Feb. 1 (Wed.), 2p.m.  #1323(E6-2. 1st fl.)

 

Abstract: Quantum electron optics is a field in which one manipulates quantum states of propagating electrons. Combined with technologies for confining and manipulating single electrons, it allows us to investigate the scattering and interference of electrons in a unit of a single electron. The necessary elements of quantum electron optics experiments include single electron beam splitter, phase shifter, Coulomb coupler, single electron source and detector, spin-orbit path and electron-pair splitter.

In this talk, we present development of some of these elements. The beam splitter and phase shifter are implemented in our original two-path interferometer [1-3]. This interferometer has been shown to be the only reliable system for the measurement of the transmission phase shift of electrons [4,5]. To suppress decoherence induced by the electron-electron interaction and enhance the interference visibility, we recently developed a two-path interferometer of depleted channels, where single electrons are injected by means of surface acoustic waves (SAWs). We also confirmed that a single electron in a static quantum dot (single electron source) can be adiabatically transferred into a SAW-driven moving quantum dot [6], a necessary ingredient for achieving the high interference visibility of a single flying electron.

Quantum electron optics also targets the manipulation of spins of flying single electrons. We found that the spin information of one or two electrons can be transferred between distant quantum dots, which work as the single electron source and detector, with the fidelity limited only by the spin flips prior to the spin transfer [7,8]. We also realized an electron-pair splitter that can be used to split spin-entangled electrons in a moving dot into different moving dots. Combined with single spin manipulation using the spin-orbit interaction (spin-orbit path) [9], this splitter should allow for Bell measurement of electron spins.

This work is in collaboration with S. Takada (now at Institut Neel), R. Ito and K. Watanabe at the University of Tokyo, B. Bertrand, S. Hermelin, T. Meunier, and C. Bäuerle at Institut Neel, and A. Ludwig and A. D. Wieck at Ruhr-Universität Bochum.

 

[1] M. Yamamoto et al., Nature Nano. 7, 247 (2012)..

[2] A. Aharony et al., New J. Phys. 16, 083015 (2014).

[3] T. Bautze et al., Phys. Rev. B 89, 125432 (2014).

[4] S. Takada et al., Phys. Rev. Lett. 113, 126601 (2014).

[5] S. Takada et al., Appl. Phys. Lett. 107, 063101 (2015).

[6] B. Bertrand et al., Nanotechnology 27, 204001 (2016).

[7] S. Hermelin et al., Nature 477, 435 (2011).

[8] B. Bertrand et al., Nature Nano. 11, 672 (2016).

[9] H. Sanada et al., Nature Phys. 9, 280 (2013).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)

 

 

Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 장소 제목
447 2021-02-15 17:00  Zoom  Magnetic Cluster Octupole Domain evolutation in chiral antiferromagnets file
446 2012-04-02 16:00  E6, 1501  A new route to ferroelectricity in magnetic spinels: a case of Co2MnO4
445 2020-12-10 13:55  Zoom  Consistency of Boltzmann equation and light dark matter from inflaton decay
444 2016-09-05 16:00  Natual Scien Bldg.(E6)m #1501  Physics Colloquium : 2016 Fall file
443 2021-01-28 15:00  Zoom  Topological Transport of Deconfined Hedgehogs in Magnets file
442 2018-12-26 16:00  E6-1. 3rd fl. #3434  Informal Workshop on Topology and Correlation file
441 2021-06-22 17:00  Zoom webinar  Spintronics meets Quantum Materials file
440 2021-06-08 10:00  Zoom webinar  Photonic crystal devices for sensing file
439 2023-06-30 11:00  E6-6 #1501  The Dual Mode Quantum Computer file
438 2023-11-29 10:00  Zoom  [High Energy Theory Seminar] Averaged null energy and the renormalization group
437 2020-09-14 17:30  Zoom webinar  KAIST Global Forum for Spin and Beyond (Third Forum) file
436 2022-11-03 13:00  E6-2 #1323  [High-Energy Theory Seminar] Supersymmetric observables via Fermi-gas method
435 2019-07-08 14:00  E6, #1322  Ultrabroadband squeezed pulses and their relation to relativity file
434 2023-04-05 16:00  E6-2, #2502  [High Energy Theory Seminar]Anomalies of Discrete 1-Form Symmetries in QCD-like Theories
433 2024-03-27 16:00  E6-2, #2502  [High Energy Theory Seminar] The Callan Rubakov Effect
432 2023-02-20 17:00  KI building (E4), Lecture Room Red (B501)  (Optics Seminar) Neural Holography for Next generation Virtual and Augmented Reality Displays file
431 2024-03-20 16:00  E6-2 #2502  [High-Energy Theory Seminar] Black hole states at finite N
430 2024-01-03 11:00  E6-2, #1323  Interplay of Strong Correlations, Topology, and Disorder in 2D Quantum Matters
429 2023-09-13 16:00  E6-2, #2502  [High Energy Theory Seminar] Cosmic Birefringence from Dark Photon
428 2022-06-23 11:00  E6 Room(#1322)  JILA’s search for the electron’s Electric Dipole Moment (eEDM) to probe physics beyond the standard model file