visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-04-06 15:30 
일시 April 6, 2016 (Wed), 3:30 PM 
장소 E6-2, RM #1323 
연사 Dr. Andrei Matlashov (Los Alamos National Laboratory) 

Superconducting Quantum Interference Devices for Precision Detection  
 
Dr. Andrei Matlashov (Los Alamos National Laboratory)
April 6, 2016 (Wed), 3:30 PM

E6-2, RM #1323
 
Abstract:  

Superconducting weak-link junctions and Quantum Interference Devices have been invented 50 years ago. This invention has prompted some interesting quantum physics, but the most significantly SQUIDs have brought a break-through to the field of experimental physics in building practical instruments with signal resolution close to the theoretical limit. This development has fundamentally changed experimental physics and precision instrumentation. 
   
 The first immediate consequence of invention of SQUID-based instrumentation was the appearance of Biomagnetism – a research field associated with measurements of extremely weak magnetic fields of biological origin, such as magneto-cardiography or MCG and magneto-encephalography or MEG. SQUID technology has significantly improved signal resolution in multiple areas of research, which had notable effects in the fields of biology, chemistry, astronomy, many applied engineering areas, and experimental physics, including elementary particle physics and axions search. 
 

In this presentation, I will briefly review my more than 30 years of experience working in development of SQUID-based instrumentation in various fields of application. It includes Biomagnetism, non-destructive evaluation, ultra-low field magnetic resonance imaging, explosive detection, and magnetic relaxometry with nano-markers. I will also discuss SQUID applications in experimental physics including elementary particle physics.  

번호 날짜 장소 제목
389 2018-05-11 14:30  E6-2. 1st fl. #1323  Disordered Floquet topological insulators file
388 2016-12-09 16:00  #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
387 2022-05-13 14:30  Zoom webinar  Topological Superconducting Spintronics Towards Zero-Power Computing Technologies file
386 2021-07-29 14:00  Online seminar  Gravitationally Induced Dark Sector and Inflationary Dynamics file
385 2015-12-11 13:30  E6-2, #1323  Quantum spin liquid in the 1/3 depleted triangular lattice Ba3(Ru1-xIrx)Ti2O9
384 2016-03-11 13:30  E6-2. 1st fl. #1501  Topological phases of matter in nonequilibrium: Topology of the Wannier-Stark ladder
383 2018-11-01 16:00  #1323, E6-2  Direct holography from a single snapshot file
382 2022-08-18 10:00  E6-1 #1323  Disorder-driven phase transition in the second-order non-Hermitian skin effect
381 2023-04-27 11:00  E6-2 #1322  Inverse Shapiro steps and coherent quantum phase slip in superconducting nanowires
380 2015-07-16 16:00  E6-2, 1318  Next-generation ultrafast laser technology for nonlinear optics and strong-field physics
379 2018-10-26 16:00  #1323, E6-2  Coexisting triple-point and nodal-line topological magnons and thermal Hall effect in pyrochlore iridates file
378 2017-03-24 14:30  #1323 (1st fl. E6-2).  Topological Dynamics
377 2015-10-15 10:00  E6-2, 5th fl. #5318  Development of Large-Bore, High Field Magnets at the NHMFL
376 2023-06-22 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP Seminar] The muon g-2 puzzle file
375 2016-05-19 15:00  May 19, 2016 (Thur.) 3PM,  The CERN Resonant WISP Search: Development, Results and Lesson-Learned
374 2016-07-08 11:00  #1323(E6-2. 1st fl.)  Isostatic magnetism
373 2015-11-23 13:30  E6-2, #1323  What's Beyond the Standard Model? Lessons from Run I and what might come in Run II
372 2017-02-01 14:00  #1323(E6-2. 1st fl.)  Quantum electron optics using flying electrons
371 2019-09-10 15:00  E6-2. 1st fl. #1323  Two-Stage Kondo Effect file
370 2017-11-03 14:30  #1323 (1st fl., E6-2.)  Quantum Resistor-Capacitor Circuit with Majorana Edge States file