visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-08-04 11:00 
일시 2015/08/04, 11PM 
장소 B501, Room Red, KI bldg. 5nd fl. 
연사 Dr. Eric Jin Ser Lee(Univ. of Manitoba, Canada) 

Propagation of ultrasound through two- and three-dimensional strongly scattering media

2015/08/04(TUE), 11PM, B501(Room Red, KI bldg. 5nd fl.)
Dr. Eric Jin Ser Lee,  Department of Physics and Astronomy, Univ. of Manitoba, Canada

 

 

During my Ph. D study at the University of Manitoba, I have investigated the propagation of ultrasound through two- and three-dimensional strongly scattering media, with either random or ordered internal structures, through experiments and finite element simulations.  All media investigated have strong scattering resonances, leading to novel transport behaviour. 

 

The two-dimensional samples consist of nylon rods immersed in water.  Nylon fishing lines under tension are used as two-dimensional scatterers.  Note that since the rods are parallel and of uniform diameter, there is negligible scattering of waves out of the plane perpendicular to the rods, so that the system appears two-dimensional from the wave point of view for propagation in this plane.  When nylon rods are surrounded by water, they exhibit strong scattering resonances.  In such an environment, the nylon scattering resonance can couple with the propagating mode through water to create a bandgap.  This is a called hybridization gap.  When the nylon rods are arranged in a triangular lattice to form two-dimensional phononic crystals, very unusual dispersion properties are observed when the lattice constant is adjusted so that Bragg and hybridization gaps overlap in frequency.  This behaviour is attributed to the competition between two co-existing propagating modes, leading to a new method for tuning bandgap properties and adjusting the transmission by orders of magnitude. 

 

The three-dimensional media were fabricated by brazing aluminum beads together to form a disordered porous solid network with either vacuum in the pores.  This system is of particular interest because it has been shown to exhibit Anderson localization of ultrasound.  With such system, the density of states (DOS) was investigated.  It is the number of vibrational states per unit frequency range per unit volume.  The DOS is a fundamental property of any system and can influence not only wave transport but also the possibility of forming localized states.  The DOS was measured by directly counting the modes in the frequency domain.  At intermediate frequencies, the DOS was found to be approximately independent of frequency, while at higher frequencies, the frequency dependence was consistent with traditional DOS models.  Furthermore, the level statistics, which describe the distribution of the separations between neighbour modes in frequency, of the modes was investigated to determine the conditions under which level repulsion occurs.  As the sample becomes larger to have more modes, the modes start to overlap and repel each other so that level repulsion effects become important.  Consequently, the level statistics were observed to become closer to GOE predictions as the sample size increased.  For the last, as there is a transition from diffusive to localized regime around the lower bandgap edge, a transition from GOE to Poisson distribution is observed.

 

Contact: Prof. YongKeun Park, Physics Dept., (yk.park@kaist.ac.kr)

 

 

번호 날짜 장소 제목
227 2019-08-22 16:00  #1323, E6-2  Physics and Applications in Nanoelectronics and Nonomechanics file
226 2022-03-25 11:00  E6-1 #1323  (응집물리 세미나) Hund's metallicity in ruthenate systems file
225 2016-08-04 14:30  KAIST Natural Science Building (E6-5), EDU 3.0 Room(1st fl.)  Relational Logic (with applications to Quantum Mechanics, String Theory, Cosmology, Neutrino Oscillations, Statistical Mechanics)
224 2021-03-25 16:00  Online Seminar (Zoom)  Search for dark matter axion with Rydberg atoms file
223 2023-06-01 16:00  E6-2, #5301  Hall viscosity and topological phenomena
222 2018-07-09 14:00  #1323, E6-2  The principles of collective learning file
221 2023-10-11 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP seminar] Particle Physics with Neutrinos file
220 2019-05-30 16:00  #1323, E6-2  Tuning the excitonic properties of semiconductors with light-matter interactions file
219 2014-12-22 14:00  E6, Rm1319  Dynamics of molecular motors: Power stroke vs Brownian ratchet file
218 2019-05-03 11:00  E6-2. 2st fl. #2502  Exotic Magnetism file
217 2015-03-04 12:00  1323호, E6-2  Bioimaging and Biosensing Using Near-Infrared Fluorescence file
216 2022-10-04 16:00  E6 #2501  Distinguishing 6d (1, 0) SCFTs
215 2023-11-15 16:00  E6-6, #119  Quantum hydrodynamic theory for plasmonics: from molecule-coupling to nonlinear optics
214 2016-03-07 16:00  E6, 1501  Physics Colloquium : 2016 Spring file
213 2019-09-18 16:00  Seminar Room #1323  Fall 2019: Physics Seminar Serises file
212 2023-03-30 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  Detecting axions with chiral magnetic effects file
211 2019-02-21 16:00  #5313, E6-2  B-meson charged current anomalies - Theoretical status file
210 2023-11-01 16:00  E6-2, #2502  [High Energy Theory Seminar] Modular functions and 3D N=4 rank-zero superconformal field theories
209 2022-09-21 16:00  College of Natural Science E6-2, Rm. 1323  Materials and Device Nanofabrication of Optical Metasurfaces file
208 2023-03-27 15:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  A coherent mechanical oscillator pumped by a suspended quantum dot file