“Hybrid quantum systems with mechanical oscillators”
2016.10.14 17:34
장소 | E6-2. 1st fl. #1323 |
---|---|
일시 | Oct. 18 (Tue.), 3PM |
연사 | Dr. JunHo Suh, Korea Research Institute of Standards and Science |
“Hybrid quantum systems with mechanical oscillators”
Dr. JunHo Suh, Korea Research Institute of Standards and Science
Oct. 18 (Tue.), 3PM, E6-2. 1st fl. #1323
Abstract:
Quantum machines are actively pursued to harness quantum coherence and entanglement as new resources for information processing and precision sensing. Among those activities, hybrid quantum systems are recognized as a promising platform for building multi-functional quantum machines by connecting quantum states in different physical domains, and mechanical oscillators are accepted as important components in the quantum hybrids[1]. In this talk, I review recent examples of hybrid quantum systems involving mechanical oscillators strongly coupled to electrons and photons. In the first part, a quantum electro-mechanical system is introduced. A cooper-pair box qubit is electrostatically coupled to a nanomechanical oscillator. A dispersive measurement of qubit states is achievable through high-quality read-out of nanomechanical motion, which also maintains qubit coherence proved via microwave spectroscopy and Landau-Zener interference. In the second part, mechanical oscillators coupled to microwave photons, or "quantum opto-mechanical systems", are described, where radiation pressure mediates the interaction between photons and the mechanical oscillator. Photons act as a probe for mechanical motion in this case, and a fundamental limit in measurement sensitivity arises due to Heisenberg's uncertainty principle, as known as quantum standard limit(SQL). By carefully measuring mechanical motion in quadratures, we identify the fundamental back-action from photons which mandates SQL, and also demonstrate a novel scheme known as quantum non-demolition measurement (QND) which allows a precise measurement without back-action in one quadrature of motion[3]. When the coupling between the microwave photons and mechanical motion is strong enough, the back-action from photons start modifying quantum noise in mechanical oscillators and produced mechanical quantum squeezed states[4,5]. Finally, it is expected that one could approach ultra-strong coupling regime as photon-mechanical oscillator coupling strength increases, where single photon coupled to mechanical motion dominates the hybrid system. Mechanical states in the ultra-strong coupling limit deviate from well-known number states which could open a new paradigm for controlling mechanical quantum states[6]. A quantum dot system embedded in a nanowire is proposed to be a candidate to reach this interesting regime, and our recent progress toward this direction is dissussed.
[1] Kurizki et.al., PNAS 112, 3866-3873 (2015).
[2] LaHaye et.al., Nature 459, 960-964 (2009).
[3] Suh et.al., Science 344, 1262-1265 (2014).
[4] Wollman et.al., Science 349, 952-955 (2015).
[5] Lei et.al., PRL 117, 100801 (2016).
[6] Nation et.al., PRA 93, 022510 (2016).
Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)
Center for Quantum Coherence in Condensed Matter, KAIST
댓글 0
번호 | 일시 | 장소 | 연사 | 제목 |
---|---|---|---|---|
352 | Nov. 11th (Fri), 4 p.m. | #1323(E6-2. 1st fl.) | Dr. Bohm-Jung Yang, SNU | Dirac fermions in condensed matters |
351 | Nov. 16 (Wed), 4p.m. | #1323(E6-2. 1st fl.) | Dr. Heung-Sik Kim , University of Toronto | Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators |
350 | Nov. 11th(Fri), 1:30 p.m. | #1323(E6-2. 1st fl.) | Dr. Keun Su Kim, POSTECH | Bandgap Engineering of Black Phosphorus |
349 | Feb. 1 (Wed.), 2p.m. | #1323(E6-2. 1st fl.) | Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo | Quantum electron optics using flying electrons |
348 | Jul. 07 (Thu.) 2PM | #1323(E6-2. 1st fl.) | Dr. Eun Ah Kim, CORNELL UNIV. | Let there be topological superconductors |
347 | October 19 (Fri.), 10:00 AM | #1323, E6-2 | Dr. Jongsoo Yoo |
Energy conversion processes during magnetic reconnection in a laboratory plasma
![]() |
346 | December 5 (Thu.), 16:00 PM | #1323, E6-2 | Prof. Soon-Hong Kwon |
Subwavelenth Photonic Devices: From Single Photon Sources to Solar Cell
![]() |
345 | October 4 (Thu.), 16:00 PM | #1323, E6-2 | Prof. Soo Jin Kim |
Engineering light absorption in an ultrathin semiconductor metafilm
![]() |
344 | May 311 (Thu.), 04:00 PM | #1323, E6-2 | Prof. Teun-Teun Kim |
Dynamic control of optical properties with gated-graphene metamaterials
![]() |
343 | December 13 (Fri.), 1:30-4:30 PM | #1323, E6-2 |
Biophysics Mini-symposium at KAIST
![]() | |
342 | November 5 (Tue.), 4:00 PM | #1323, E6-2 | Dr. Shik Shin |
Study on nanomaterials by the development of ultrahigh resolution laser-photoelectron microscopy (PEEM)
![]() |
341 | October 15 (Tue.), 16:00 PM | #1323, E6-2 | Prof. Pilkyung Moon |
Moiré superlattices and graphene quasicrystal
![]() |
340 | October 16 (Tue.), 10:00 AM | #1323, E6-2 | Dr. Won-Ki Cho |
Capturing protein cluster dynamics and gene expression output in live cells
![]() |
339 | November 1 (Thu.), 16:00 PM | #1323, E6-2 | Dr. KyeoReh Lee |
Direct holography from a single snapshot
![]() |
338 | November 28 (Thu.), 16:00 PM | #1323, E6-2 | Prof. Kyung Taec Kim |
Generation of coherent EUV emissions using ultrashort laser pulses
![]() |
337 | November 21 (Wed.), 15:00 PM | #1323, E6-2 | Prof. Seongshik Oh |
Engineering topological quantum physics at the atomic scale
![]() |
336 | September 18(Wed.), 16:00PM | #1323, E6-2 | Prof.David Schuster |
Exploring Synthetic Quantum Matter in Superconducting Circuits
![]() |
335 | December 18 (Tue.), 4:00 PM | #1323, E6-2 | Prof. Shin-ichi Uchida |
Road to Higher Tc Superconductivity
![]() |
334 | May 9 (Wed.), 04:00 PM | #1323, E6-2 | Prof. Jong-Soo Rhyee |
Recent advances in thermoelectric bulk composites
![]() |
333 | Oct. 25 (Fri), 15:00 ~ | #1323, E6-2 | Daesu Lee,Junwoo Son,MyungJoon Han ,Siheon Ryee,Eun-Gook Moon |
Physics Seminar
![]() |