visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2020-09-24 09:00 
일시 Sep. 24(Thu), 09:00~, Sep. 24(Thu), 16:00 ~ 
장소 Zoom Video 
연사 Akash V. Dixit (University of Chicago), Dr. Boris Ivanov (Novosibirsk State Technical University) 

Speaker: Akash V. Dixit (University of Chicago)

 

Date: September 24, 2020 (Thursday)

 

Time: 9:00 AM

 

Venue: Zoom Video Conference System (Please click the link below)

 

https://kaist.zoom.us/j/6108068959?pwd=TXV2OGlWdVRtcGhmNXVTRWlla2pHQT09


Meeting ID: 610 806 8959
 

Passcode: 131015

 

Topic: Searching for Dark Matter with a Superconducting Qubit

Abstract:

The gravitational evidence for the existence of dark matter is extensive 1 , yet thus far, dark matter has evaded direct detection in terrestrial experiments. Detection mechanisms for low mass dark matter candidates such as the axion 2–5 or hidden photon 6,7 leverage potential interactions with electromagnetic fields, whereby the dark matter (of unknown mass) on rare occasion converts into a single photon 8,7. Current dark matter searches operating at microwave frequencies, use a resonant cavity to coherently accumulate the field sourced by the dark matter and use a quantum limited linear amplifier to read out the cavity signal 9–12. Here, we report the development of a novel microwave photon counting technique and use it to set a new exclusion limit on hidden photon dark matter. We constrain the kinetic mixing angle to  ≤ 1.82 × 10−15 in a narrow band around 6.011 GHz (24.86 µeV) with an integration time of 8.33 s. We operate a superconducting qubit to make repeated quantum non-demolition measurements of cavity photons and apply a hidden Markov model analysis to reduce the noise to 15.7 dB below the quantum limit, with performance limited by the residual population of the system. The techniques presented here will dramatically improve the sensitivity of future dark matter searches in the range of 3-30 GHz and are generally applicable to measurements that require high sensitivity to inherently low signal photon rates.

 
 

Seminar Invitation (September 24, 2020), 4 PM

 
Speaker: Dr. Boris Ivanov (Novosibirsk State Technical University)


Date: September 24, 2020 (Thursday)

Time: 4:00 PM

Venue: Webinar Video Conference System (Please click the link below)

https://webinar.kafe.or.kr

Seminar Name: Cryogenic Microwave Circuit Development at the NSTU

Password: None

 

Topic: Cryogenic Microwave Circuit Development at the NSTU

Abstract:

During the seminar I am going to show the last scientific results of 4 research performed in the Laboratory of Quantum and Cryogenic Electronics. I will concentrate the major part of the talk around cryogenic amplifiers design, development and characterization. Thus, the cryogenic low noise amplifier with the noise temperature of 6 K and gain value of more than 30 dB is shown for the frequency range from 6 to 12 GHz. Based on such microwave amplifiers the superconducting X-mon qubit structures were measured. The experiments with qubits were performed at continues microwave field and with short microwave pulses. The qubit energy spectrums were obtained and based on the AC-Stark experiment the low average photon number close to single photon mode in qubit-resonator structure was obtained. From the other side for the bolometer circuits readout and Josephson junctions measurements the low frequency cryogenic amplifiers were designed and characterized. The minimum voltage noise density corresponds to 150 pV/root(Hz) with the gain value of more than 60 dB for the presented amplifiers.

번호 날짜 장소 제목
164 2019-03-29 14:30  E6-2. 1st fl. #1323  Epitaxial Multifunctional Oxide Thin Films for Novel Electronics file
163 2019-09-10 15:00  E6-2. 1st fl. #1323  Two-Stage Kondo Effect file
162 2019-11-01 14:30  E6-2. 1st fl. #1323  Squeezing the best out of 2D materials file
161 2018-12-07 16:00  E6-2. 1st fl. #1323  Novel probes of interacting electrons in 2D systems file
160 2018-06-01 11:00  E6-2. 1st fl. #1323  Topological phases in low-dimensional quantum materials file
159 2016-10-18 15:00  E6-2. 1st fl. #1323  “Hybrid quantum systems with mechanical oscillators”
158 2017-09-22 16:00  E6-2. 1st fl. #1323  Unexpected Electron-Pairing in Integer Quantum Hall Effect file
157 2019-09-27 16:00  E6-2. 1st fl. #1323  0D/1D/2D/3D III-V materials grown by MBE for Optelectronics file
156 2018-05-17 13:30  E6-2. 1st fl. #1323  Quantum Spin Liquid in Kitaev Materials file
155 2018-11-09 16:00  E6-2. 1st fl. #1323  Quantum sensing and imaging with diamond defect centers for nano-scale spin physics file
154 2018-12-27 16:00  E6-2. 1st fl. #1323  Quantum Innovation (QuIN) Laboratory file
153 2016-04-12 16:00  E6-2. 1st fl. #1323  Confinement of Superconducting Vortices in Magnetic Force Microscopy
152 2018-11-09 14:30  E6-2. 1st fl. #1323  Moiré superlattices – from twisted bilayer graphene to quasicrystal file
151 2017-04-28 14:30  E6-2. 1st fl. #1323  Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion
150 2018-12-11 16:00  E6-2. 1st fl. #1323  Natural compact representation of Matsubara Green’s functions: applications to analytic continuation and quantum many-body simulations file
149 2017-09-22 13:00  E6-2. 1st fl. #1323  Superconductor-metal-insulator transition in thin Tantalum films file
148 2018-10-12 14:30  E6-2. 1st fl. #1323  Quantum Advantage in Learning Parity with Noise file
147 2017-05-12 13:30  E6-2. 1st fl. #1323  Topological Dirac insulator
146 2017-09-22 14:30  E6-2. 1st fl. #1323  Quantum Electronic Transport in Graphene Hybrid Nanostructures file
145 2019-11-01 16:00  E6-2. 1st fl. #1323  Electron transport through weak-bonded contact metal with low dimensional nano-material file