visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-12-03 16:00 
일시 2015/12/03, 4PM 
장소 E6-2, #1323 
연사 Dr. Sang-Yun Lee (3rd institute of Physics, University of Stuttgart, Germany) 

Hybrid solid state spin qubits in wide bandgap semiconductors

 

Dec. 3 (Thu), 4:00 p.m. , Seminar Room(#1323)
Dr. Sang-Yun Lee, 3rd institute of Physics, University of Stuttgart, Germany

 

There has been a growing interest in quantum bit (qubit) research over the last decades to realize quantum computation, which will allow faster computation of complex problems, effective simulation of quantum phenomena, and encrypted quantum communication. Spins of electrons and nuclei of point defects in solids, so-called solid-state spin qubits, have been considered as leading contenders, since quantum devices based on solids can be easily integrated into modern electronic devices. In order to realize efficient control and readout of long-lived qubits, hybrid quantum systems consisting of coupled electron and nuclear spins in diamond have been suggested. In these systems, the single nuclear spin is used as long-lived quantum memories thanks to its long coherence time, while the electron spin serves as a readout gate and an ancillary qubit for initializing the nuclear spin. In my presentation, I’ll introduce hybrid spin qubits based on isolated deep defects in wide bandgap semiconductors such as diamond and silicon carbide, and their applications for quantum information processing and quantum metrology.


Contact: Yoonsoo Kim, Administration Office.  Tel. 2599

번호 날짜 장소 제목
280 2022-11-03 16:00  E6-2 #1323  (광학분야 세미나) Single-photon emission from low-dimensional materials
279 2023-06-01 16:00  E6-2 #1323  (광학분야 세미나)Quantum sensing using a squeezed light from hot Rb vapor
278 2022-10-28 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Machine-Learning-Guided Prediction models and Materials discovery for high Tc cuprates file
277 2022-12-09 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) Single-shot measurements of strongly-correlated artificial molecular levels in semiconductor quantum dots file
276 2023-03-16 16:00  E6-2 #1323  2023 봄학기 광학분야 및 응집물리 특별세미나 전체 일정 file
275 2022-11-25 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) DMFT+ NRG: From models to real materials, from local to nonlocal correlations file
274 2017-10-10 16:00  E6-2 #1323  Discovery of New 2D Materials with Diverse Physical Properties
273 2020-10-23 14:00  E6-2 #1323  Plasmon spectroscopy of low-dimensional superconductors in fluctuating regime file
272 2022-11-24 16:00  E6-2 #1323 & Zoom  Probing fundamental physics by mapping the mm and sub-mm sky
271 2016-09-29 16:00  E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches
270 2023-07-14 11:00  E6-2 #1501  Interfaces engineering of thin film oxides
269 2024-03-20 16:00  E6-2 #2502  [High-Energy Theory Seminar] Black hole states at finite N new
268 2024-03-13 16:00  E6-2 #2502  [High-Energy Theory Seminar] The Schwarzschild Black Hole from Perturbation Theory to all Orders
267 2022-10-26 10:00  E6-2 #2502  Replica Higher-Order Topology of Hofstadter Butterflies in Twisted Bilayer Graphene
266 2022-08-08 14:00  E6-2 #2502  Classical Shadow Tomography for Analog Quantum Simulators
265 2020-11-12 16:00  E6-2 1323  2020 가을학기 광학분야 특별세미나
264 2022-01-17 14:00  E6-2 Room 2502  Five Lectures on Observational Probes of Dark Energy file
263 2016-09-02 16:00  E6-2(1st fl) #1323  Quantum Electrical Transport in Topological Insulator Nanowires
262 2016-09-02 14:30  E6-2(1st fl.), #1323  Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
261 2023-11-23 16:00  E6-2(Natural Science B/D). 1st fl. #1323  Deciphering the Enigma of Quantum Materials by X-ray Scattering and Spectroscopy