visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-03-18 11:00 
일시 March 18(Fri.) 11:00 
장소 Online seminar 
연사 Dr. Dirk Wulferding (IBS-Center for Correlated Electron Systems, Seoul National University, Seoul) 
1. Date / Time 
  - March 18, 2022 
  - 11:00 AM (KST)
 
2. ZOOM (Only online)
 
3. Speaker
    - Dr. Dirk Wulferding (IBS-Center for Correlated Electron Systems, Seoul National University, Seoul)
 
4. Talk Title
    - Illuminating exotic states of matter: Raman spectroscopy as an experimental tool to characterize quantum spin liquids 
 
5. Abstract
   -  Quantum spin liquids are paradigmatic examples of long-range entangled quantum states that host fractionalized excitations and may realize non-abelian anyonic quantum statistics. These states can emerge in systems with magnetic correlations that are restricted in dimensionality and in coordination, and that are characterized by a small quantum spin number [1]. While this concept is strikingly simple, so far only a few materials exist that are considered as good candidates for quantum spin liquid ground states. A major challenge is that these states evade any classical long-range order, thereby lacking any clear experimental fingerprints. Adding to this challenge is that oftentimes only microscopically small samples can be synthesized, thus limiting possible experimental characterization probes. 
    Raman spectroscopy is a method sensitive to magnetic excitations in both triplet and singlet sector, and therefore sensitive to fractionalized spinon and Majorana fermionic excitations that emerge from quantum spin liquid ground states [2]. In my talk, I will review how we characterize the ground states of various Heisenberg antiferromagnets on the kagome lattice, and of Kitaev spin liquids using Raman spectroscopy at high magnetic fields. Our data suggest that in vicinity to quantum criticality Kitaev magnets may host non-abelian Majorana bound states [3]. 
[1] see, e.g., Savary, et al., Rep. Prog. Phys. 80, 016502 (2017). 
[2] Wulferding, et al., JPCM 32, 043001 (2020). 
[3] Wulferding, et al., Nat. Commun. 11, 1603 (2020)
 
0221_카이스트 물리학과(응집물리)포스터-최종.jpg

 

번호 날짜 장소 제목
302 2015-12-11 13:30  E6-2, #1323  Quantum spin liquid in the 1/3 depleted triangular lattice Ba3(Ru1-xIrx)Ti2O9
301 2016-01-11 16:00  E6-2, #1323  Mott Physics in the Strong Spin-Orbit Coupling Regime
300 2016-09-29 16:00  E6-2, #1323  2016 Fall, Physics Seminar Serises file
299 2015-12-03 16:00  E6-2, #1323  Hybrid solid state spin qubits in wide bandgap semiconductors
298 2015-11-10 16:00  E6-2, #1323  Rapid heating of matter using high power lasers
297 2015-11-23 13:30  E6-2, #1323  What's Beyond the Standard Model? Lessons from Run I and what might come in Run II
296 2019-07-31 16:00  E6-2, #1323  Features of ballistic superconducting graphene file
295 2019-06-24 11:00  E6-2, #1323  Topological photonic anomalies file
294 2015-12-09 14:00  E6-2, #1323  SWELLABLE COLLOIDAL PARTICLES ARE SWELL
293 2015-12-02 16:00  E6-2, #1323  Samarium Hexaboride: Is it a Topological insulator?
292 2015-12-11 15:45  E6-2, #1323  Dynamical mean field theory studies on heavy fermion system
291 2015-12-01 16:00  E6-2, #1323  Introducing extra dimensions to spectroscopic studies of advanced quantum materials
290 2016-01-26 14:00  E6-2, #1323  Electrochemistry on Nano- and Atomic Levels: Scanning Probe Microscopy Meets Deep Data
289 2019-07-25 16:00  E6-2, #1323  Band topology of twisted bilayer graphene file
288 2023-09-18 11:00  E6-2, #1322  Magic polarisation trapping of polar molecules for tunable dipolar interactions file
287 2023-11-30 10:30  E6-2, #1322  [High-Energy Theory Seminar] 3d-3d correspondence and 2d N = (0,2) boundary conditions
286 2023-08-23 16:00  E6-2, #1322  [High Energy Theory Seminar] A spacetime tensor network for AdS3/CFT2
285 2023-03-02 11:00  E6-2, #1322  Probing Anomalies of Non-Invertible Symmetries with Symmetry TFTs
284 2019-06-28 14:00  E6-2, #1322  1st Research-exchange meeting of computational material physics file
283 2023-11-23 16:00  E6-2(Natural Science B/D). 1st fl. #1323  Deciphering the Enigma of Quantum Materials by X-ray Scattering and Spectroscopy