Rydberg electromagnetically induced transparency and microwave-to-optical conversion using Rydberg atoms
2018.06.12 14:21
장소 | E6-2. 2nd fl. #2502 |
---|---|
일시 | Jun. 18 (MON), 10:00 AM |
연사 | Dr. Thibault VOGT |
Physics Seminar
“Rydberg electromagnetically induced transparency and microwave-to-optical conversion using Rydberg atoms”
Centre for Quantum Technology, National University of Singapore
The very large transition dipole moments of Rydberg atoms are responsible for strong long-range dipole-dipole interactions as well as very large couplings to external fields. Because of this property, Rydberg atoms have found direct applications for quantum sensing, quantum simulation, and non-linear optics at the few-photons level. I will describe a few examples realized in the Rydberg atom group at CQT.
In the first part of the talk, I will present our recent demonstration of coherent microwave-to-optical conversion via frequency mixing in Rydberg atoms [1]. In contrast to other physical systems being explored, our scheme requires no cavity and allows for free-space and broadband conversion due to the strong coupling of microwaves to Rydberg transitions. This result is promising for future quantum communication networks, as broadband interconversion of microwave and optical fields will be essential for connecting superconducting qubits and photonic qubits. I will discuss the recent strategies that we have developed for improving the efficiency of the conversion, which include the demonstration of three-photon electromagnetically induced transparency (EIT), and collinear frequency mixing [2,3].
In the second part, I will present our long-term goal of demonstrating spatially resolved imaging of Rydberg atoms, using Rydberg EIT in the presence of long-range dipole-dipole interactions. I will describe diverse characterizations of the effect of interactions on Rydberg electromagnetically induced transparency, and show that Lévy statistics describes well this many-body system [4,5].
[1] Han, J., Vogt, T., Gross, C., Jaksch, D., Kiffner, K., and Li, W. Coherent microwave-to-optical conversion via six-wave mixing in Rydberg atoms, Phys. Rev. Lett. 120, 093201 (2018)
[2] Vogt, T., Gross, C., Gallagher, T. F., and Li, W., Microwave-assisted Rydberg Electromagnetically induced transparency, arXiv:1802.00529, accepted for publication in Opt. Lett. (2018)
[3] Vogt, T., Gross, C., Han, J., and Li, W., Efficient microwave-to-optical conversion using Rydberg atoms, under preparation (2018)
[4] Han, J., Vogt, T., and Li, W., Spectral shift and dephasing of electromagnetically induced transparency in an interacting Rydberg gas, Phys. Rev. A 94, 043806 (2016)
[5] Vogt, T., Han, J., Thiery, A., and Li, W., Lévy statistics of interacting Rydberg gases, Phys. Rev. A 95, 053418 (2017)
Contact: EunJung Jo, Physics Dept., (jojo@kaist.ac.kr)
Department of Physics, KAIST
댓글 0
번호 | 일시 | 장소 | 연사 | 제목 |
---|---|---|---|---|
202 | Jun 28, 14:00 | E6-2, #1322 | Dr. Bongjae Kim, Dr. Sooran Kim, Dr. Jeongwoon Hwang |
1st Research-exchange meeting of computational material physics
![]() |
201 | July 31(Wed.)/ 16:00 | E6-2, #1323 | Dr. Ivan Borzenets |
Features of ballistic superconducting graphene
![]() |
200 | July 25(Thur.),4:00PM | E6-2, #1323 | Prof.Bohm-Jung Yang |
Band topology of twisted bilayer graphene
![]() |
199 | Jun 24 (Mon) 11:00 | E6-2, #1323 | Dr. Henning Schomerus |
Topological photonic anomalies
![]() |
198 | 2016/09/29-12/13 | E6-2, #1323 | Sangyoon Han 외 |
2016 Fall, Physics Seminar Serises
![]() |
197 | 2016/1/26, 2PM | E6-2, #1323 | Dr. Sergei V. Kalinin (Center for Nanophase Materials Sciences, Oak Ridge National Laboratory) | Electrochemistry on Nano- and Atomic Levels: Scanning Probe Microscopy Meets Deep Data |
196 | 2016/1/11, 4PM | E6-2, #1323 | Dr. B.J.Kim (Max Planck Institute for Solid State Research) | Mott Physics in the Strong Spin-Orbit Coupling Regime |
195 | 2015/12/11, 3:45PM | E6-2, #1323 | Dr. Ji Hun Sim (POSTECH) | Dynamical mean field theory studies on heavy fermion system |
194 | 2015/12/11, 1:30PM | E6-2, #1323 | Dr. KwangYong Choi (Chung-Ang University) | Quantum spin liquid in the 1/3 depleted triangular lattice Ba3(Ru1-xIrx)Ti2O9 |
193 | 2015/12/09, 2PM | E6-2, #1323 | Arjun G. Yodh (University of Pennsylvania) | SWELLABLE COLLOIDAL PARTICLES ARE SWELL |
192 | 2015/12/03, 4PM | E6-2, #1323 | Dr. Sang-Yun Lee (3rd institute of Physics, University of Stuttgart, Germany) | Hybrid solid state spin qubits in wide bandgap semiconductors |
191 | 2015/12/02, 4PM | E6-2, #1323 | Dr. Dae-Jeong Kim (Dept. of Physics and Astronomy, University of California, Irvine) | Samarium Hexaboride: Is it a Topological insulator? |
190 | 2015/12/01, 4PM | E6-2, #1323 | Dr. Yeong Kwan Kim(Lawrence Berkeley National Laboratory, USA) | Introducing extra dimensions to spectroscopic studies of advanced quantum materials |
189 | 2015/11/28, 10AM | E6-2, #1323 | Dr. Suyong Jung (Korea Research Institute of Standards and Science) | Electron Tunneling Spectroscopy of Single and Bilayer Graphene with Hexagonal Boron Nitride as Tunneling Barrier |
188 | 2015/11/23, 1:30PM | E6-2, #1323 | Dr. Michael Park (Stanford University) | What's Beyond the Standard Model? Lessons from Run I and what might come in Run II |
187 | 2015/11/19, 4PM | E6-2, #1323 | Dr. Daesu Lee (University of Wisconsin-Madison) | Emergent Collective Phenomena and Functions at Reduced Dimensions |
186 | 2015/11/24, 4PM | E6-2, #1323 | Dr. Kab-Jin Kim (Institute for Chemical Research, Kyoto University, Japan) | Topology-based understanding of spin dynamics in inhomogeneously magnetized systems |
185 | 2015/11/10, 4PM | E6-2, #1323 | Dr. Woosuk Bang (Physics division, Los Alamos National Laboratory) | Rapid heating of matter using high power lasers |
184 | 2015/08/03,10:30AM | E6-2, #1323 (Seminar Room) | Dr. Jonghee Yoo (Fermi National Accelerator Laboratory, USA ) | Axion Search |
183 | February 12(Web.) | E6-2, #5318 | Prof. Kunio Kaneta |
From inflation to new weak-scale
![]() |