visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 E6-2. 1st fl. #1323 
일시 Apr. 28 (Fri.), 02:30 PM 
연사 Dr. JeongYoung Park Graduate School of EEWS, KAIST 

 

Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion

 

Dr. JeongYoung Park

Graduate School of EEWS, KAIST

Apr. 28 (Fri.), 02:30 PM

E6-2. 1st fl. #1323

 

 

Abstract: 

A pulse of high kinetic energy electrons (1–3 eV) in metals can be generated after surface exposure to external energy, such as the absorption of light or exothermic chemical processes. These energetic electrons are not at thermal equilibrium with the metal atoms and are called ‘‘hot electrons’’. The detection of hot electrons and understanding the correlation between hot electron generation and surface phenomena are challenging questions in the surface science and catalysis community. Hot electron flow generated on a gold thin film by photon absorption (or internal photoemission) appears to be correlated with localized surface plasmon resonance. 

In this talk, I will show strategy to quantify the non-adiabatic energy transfer and detect hot electron flux during the elementary steps of the energy conversion process and catalytic reaction processes occurring at both of solid-gas and solid-liquid interfaces. To detect and utilize the hot electron flows, the nanodiodes consisting of metal catalyst film, semiconductor layers, and Ohmic contact pads were constructed It was shown that the chemicurrent or hot electron flows were well correlated with the turnover rate of CO oxidation or hydrogen oxidation separately measured by gas chromatography, suggesting the intrinsic relation between catalytic reaction and hot electron generation. We show a novel scheme of graphene catalytic nanodiode composed of a Pt NPs array on graphene/TiO2 Schottky nanodiode, which allows detection of hot electron flows induced by hydrogen oxidation on Pt NPs. By analyzing the correlation between the turnover rate (catalytic activity) and hot electron current (chemicurrent) measured on the graphene catalytic nanodiodes, we demonstrate that the catalytic nanodiodes utilizing a single graphene layer for electrical connection of Pt NPs are beneficial for the detection of hot electrons due to not only atomically thin nature of graphene but also reducing the height of the potential barrier existing at the Pt NPs/graphene interface. I will show that hot electron flow generated on a gold thin film by photon absorption (or internal photoemission) is amplified by localized surface plasmon resonance. Finally, The effect of surface plasmons on the catalytic and photocatalytic activity on metal–oxide hybrid nanocatalysts is also highlighted. These phenomena imply the efficient energy conversion from the photon energy to the chemical energy, with the potential application of hot electron-based photocatalytic devices.

 

 

 

번호 일시 장소 연사 제목
공지 2019/09/18 - 12/5  Seminar Room #1323  Prof. David Schuster and etc.  Fall 2019: Physics Seminar Serises
공지 2019/09/02 - 12/09  Seminar Room 1501  이호성 박사 (한국표준과학연구원) and etc.  Fall 2019: Physics Colloquium
125 Nov. 04 (Fri), 3:00 PM  E6-2. #1323(1st fl.)  Dr. Dohun Kim, Department of Physics and Astronomy, SNU  Quantum information experiments using few electron spins in semiconductors
124 May 24 (Tue) 4 PM  E6-2. #1323(1st fl.)  Dr. Euyheon Hwang, SKKU Advanced Institute of Nanotechnology, Sung Kyung Kwan University  Electronic and magnetic properties of 2D transition-metal thiophosphates and tunability of magnetic order with carrier density
123 Oct. 07 (Fri), 1:30 PM  E6-2. #1323(1st fl.)  Dr. Suk Bum Chung, IBS-CCES , Seoul National University  “Symmetry and topology in transition metal dichalcogenide?”
122 Sep. 29 (Thu), 4:00 PM  E6-2. #2501(2nd fl.)  Dr. Minu Kim, Institute for Basic Science, Seoul National University  Exploring the phase diagram of BaBiO3: epic voyage of just another bad trip?
121 4pm, Sep. 21 (Wed.  E6-2. #2502(2nd fl.)  Dr. Henrik Johannesson , University of Gothenburg (Sweden) and Beijing Computational Science Research Center (China)  Entanglement probe of two-impurity Kondo physics
120 2015/09/07, 3PM  E6-2. 1st fl. #1318  Dr. Jasbinder Sanghera (U.S. Naval Research Laboratory (NRL))  Advanced Optical Materials and Devices at NRL
119 Apr. 5 (Tue.), 4PM  E6-2. 1st fl. #1322  Dr. Ara Go, Columbia University  A new impurity solver for multi-orbital systems: adaptive truncation of the Hilbert space
118 Apr. 19 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. YoungWoo Nam  A family of finite-temperature electronic phase transitions in graphene multilayers file
117 Mar. 29 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Seung Hyub Baek  Epitaxial Multifunctional Oxide Thin Films for Novel Electronics file
116 Oct. 12 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. HyungWoo Lee  Direct observation of a two-dimensional hole gas at oxide interfaces file
115 Dec. 7 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Gyung Min Choi  Spin generation from heat and light in metals file
114 Apr. 19 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Seok Kyun Son  Graphene and hBN heterostructures file
113 Dec. 7 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Joon Ho Jang  Novel probes of interacting electrons in 2D systems file
112 May. 11 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Nam Kim  암페어 단위 재정의와 단전자 펌프 소자 개발 file
111 DEC. 16~18 (Sun~Tue)  E6-2. 1st fl. #1323  Prof. Keisuke Totsuka  Lectures on 2d Conformal Field Theory file
110 Sep. 27 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Jindong Song  0D/1D/2D/3D III-V materials grown by MBE for Optelectronics file
109 Sep. 10 (Tue.), 03:00 PM  E6-2. 1st fl. #1323  Dr. Mikhail Kiselev  Two-Stage Kondo Effect file
108 Sep. 27 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Joon Sue Lee  Spin-charge conversion in topological insulators for spintronic applications file
107 Apr. 09 (Mon.), 11:00 AM  E6-2. 1st fl. #1323  Dr. Seung-Sup B. Lee  Doublon-holon origin of the subpeaks at the Hubbard band edges file
106 May. 11 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Kun Woo Kim  Disordered Floquet topological insulators file