visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 E6-2, #1323 
일시 2016/1/26, 2PM 
연사 Dr. Sergei V. Kalinin (Center for Nanophase Materials Sciences, Oak Ridge National Laboratory) 

Electrochemistry on Nano- and Atomic Levels: Scanning Probe Microscopy Meets Deep Data

 

Jan. 26 (Tue), 2PM,  E6-2. #1323
Dr. Sergei V. Kalinin,  Center for Nanophase Materials Sciences, Oak Ridge National Laboratory

 

Structural and electronic properties of oxide surfaces control their physical functionalities and electrocatalytic activity, and are currently of interest for energy generation and storage applications. In this presentation, I will discuss several examples of high-resolution studies of the electronic and electrochemical properties of oxide surfaces enabled by multidimensional scanning probe microscopies. On the mesoscopic scale, combination of strain- and current sensitive scanning probe microscopies allows to build nanometer-scale maps of local reversible and irreversible electrochemical activities. The use of multivariate statistical methods allows separating the complex multidimensional data sets into statistically significant components which in certain cases can be mapped onto individual physical mechanisms. I will further discuss the use of in-situ Pulsed Laser Deposition growth combined with atomic resolution Scanning Tunneling Microscopy and Spectroscopy to explore surface structures and electrochemical reactivity of oxides on the atomic scale. For SrRuO3, we directly observe multiple surface reconstructions and link these to the metal-insulator transitions as ascertained by UPS methods. On LaxCa1-xMnO3, we demonstrate strong termination dependence of electronic properties and presence of disordered oxygen ad-atoms. The growth dynamics and surface terminations of these films are discussed, along with single-atom electrochemistry experiments performed by STM. Finally, I explore the opportunities for atomically-resolved imaging and property data mining of functional oxides extending beyond classical order parameter descriptions, and giving rise to the deep data analysis in materials research. 
This research is supported by the by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division, and was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, BES DOE.

 

Contact: Chan-Ho Yang, Physics Dept., (chyang@kaist.ac.kr)

번호 일시 장소 연사 제목
279 October 17 (Thu.), 16:00 PM  #1323, E6-2  Prof. Namkyoo Park  Top down manipulation of Waves : From Metamaterials, Correlated Disorder, Quantum Analogy, to Digital Processing file
278 October 15 (Tue.), 16:00 PM  #1323, E6-2  Prof. Pilkyung Moon  Moiré superlattices and graphene quasicrystal file
277 September 26 (Thu.), 16:00 PM  #1323, E6-2  Han Seb Moon  Entanglement Swapping with Autonomous Polarization-Entangled Photon-Pairs from Warm Atomic Ensemble file
276 September 18(Wed.), 16:00PM  #1323, E6-2  Prof.David Schuster  Exploring Synthetic Quantum Matter in Superconducting Circuits file
275 2019. 8. 22 4PM & 8. 23 3PM  #1323, E6-2  Prof. Andrew N Cleland  Physics and Applications in Nanoelectronics and Nonomechanics file
274 July 30 (Tue), 4:00 PM  #1323, E6-2  Dr. Mingu Kang  Dirac fermions and flat bands in correlated kagome metals file
273 June 28 (Fri.), 13:30 PM  #1323, E6-2  Dr. Yusuke Kozuka  Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures file
272 June 17 (Mon.), 10:30 AM  #1323, E6-2  Dr. See-Hun Yang  Chiral Spintronics file
271 June 4 (Tue.), 5:00 PM  #1323, E6-2  Prof. Minsu Kim  Stochastic nature of bacterial eradication using antibiotics file
270 May 30 (Thu.), 16:00 PM  #1323, E6-2  Prof. Chang-Hee Cho  Tuning the excitonic properties of semiconductors with light-matter interactions file
269 May 24 (Fri.), 16:00 PM  #1323, E6-2  Prof. Soonjae Moon  Infrared spectroscopy study on metal-insulator transitions in layered perovskite iridates file
268 May 31 (Fri.), 11:00 AM  #1323, E6-2  Prof. Guido Burkard  Cavity QED with Spin Qubits file
267 May 9 (Thu.), 16:00 PM  #1323, E6-2  Prof. Kwang Geol Lee  Quantum Optical Sensing Using Single Photons And Single Photon Emission from Single Emitters file
266 May 9 (Thu.), 16:00 PM  #1323, E6-2  Prof. Kwang Geol Lee  Quantum Optical Sensing Using Single Photons And Single Photon Emission from Single Emitters file
265 May. 8th (Wed), 16:00  E6 Room(#1323)  Jieun Lee  Imaging valley dependent electron transport in 2D semiconductors file
264 May 2 (Thu.), 4:00 PM  #1323, E6-2  Prof. Joon Ik Jang  Anomalous optical properties of halide perovskites file
263 May 1 (Wed), 4:00 PM  #1323, E6-2  Dr. Sungkyun Choi  Raman and x-ray scattering study on correlated electron systems: two case examples file
262 April 26 (Fri.), 4:00 PM  #1323, E6-2  Dr. Soonwon Choi  Robust Quantum Metrology using Strongly Interacting Spin Ensembles and Quantum Convolutional Neural Network file
261 April 23 (Tue.), 4:00 PM  #1323, E6-2  Prof. Johan Chang  From Mott physics to high-temperature superconductivity file
260 Apr.19 (Fri.), 11:00 AM  #1323, E6-2  Dr. Ji-Sang Park  First-principles studies of semiconductors for solar cell applications file