visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-10-18 15:00 
일시 Oct. 18 (Tue.), 3PM 
장소 E6-2. 1st fl. #1323 
연사 Dr. JunHo Suh, Korea Research Institute of Standards and Science 

“Hybrid quantum systems with mechanical oscillators”

 

Dr. JunHo Suh, Korea Research Institute of Standards and Science
Oct. 18 (Tue.), 3PM, E6-2. 1st fl. #1323

 

Abstract:

Quantum machines are actively pursued to harness quantum coherence and entanglement as new resources for information processing and precision sensing. Among those activities, hybrid quantum systems are recognized as a promising platform for building multi-functional quantum machines by connecting quantum states in different physical domains, and mechanical oscillators are accepted as important components in the quantum hybrids[1]. In this talk, I review recent examples of hybrid quantum systems involving mechanical oscillators strongly coupled to electrons and photons. In the first part, a quantum electro-mechanical system is introduced. A cooper-pair box qubit is electrostatically coupled to a nanomechanical oscillator. A dispersive measurement of qubit states is achievable through high-quality read-out of nanomechanical motion, which also maintains qubit coherence proved via microwave spectroscopy and Landau-Zener interference. In the second part, mechanical oscillators coupled to microwave photons, or "quantum opto-mechanical systems", are described, where radiation pressure mediates the interaction between photons and the mechanical oscillator.  Photons act as a probe for mechanical motion in this case, and a fundamental limit in measurement sensitivity arises due to Heisenberg's uncertainty principle, as known as quantum standard limit(SQL). By carefully measuring mechanical motion in quadratures, we identify the fundamental back-action from photons which mandates SQL, and also demonstrate a novel scheme known as quantum non-demolition measurement (QND) which allows a precise measurement without back-action in one quadrature of motion[3]. When the coupling between the microwave photons and mechanical motion is strong enough, the back-action from photons start modifying quantum noise in mechanical oscillators and produced mechanical quantum squeezed states[4,5]. Finally, it is expected that one could approach ultra-strong coupling regime as photon-mechanical oscillator coupling strength increases, where single photon coupled to mechanical motion dominates the hybrid system. Mechanical states in the ultra-strong coupling limit deviate from well-known number states which could open a new paradigm for controlling mechanical quantum states[6]. A quantum dot system embedded in a nanowire is proposed to be a candidate to reach this interesting regime, and our recent progress toward this direction is dissussed.

 

[1] Kurizki et.al., PNAS 112, 3866-3873 (2015).
[2] LaHaye et.al., Nature 459, 960-964 (2009).
[3] Suh et.al., Science 344, 1262-1265 (2014).
[4] Wollman et.al., Science 349, 952-955 (2015).
[5] Lei et.al., PRL 117, 100801 (2016).
[6] Nation et.al., PRA 93, 022510 (2016).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)
Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 장소 제목
522 2016-04-26 16:00  #1323(1st Floor. E6-2)  Transport spectroscopy for electronic bands in carbon-based nanomaterials with weak-bond contacts
521 2016-11-1 10:30  #1323(E6-2 1st fl.)  Time scale dependent dynamics in InAs/InP quantum dot gain media
520 2016-06-01 16:00  #1323(E6-2 1st fl.)  Laboratory experiments relevant to mesospheric clouds, Saturn’s rings & astrophysical jets
519 2016-10-27 16:00  #1323(E6-2)  Terahertz Metal Optics
518 2016-05-19 16:00  #1323(E6-2, 1st fl.)  Nonlinear/quantum optical effect in silicon nano-photonics
517 2016-06-16 16:00  #1323(E6-2, 1st fl.)  Quantum information processing using quantum dots and photonic crystal cavities
516 2016-09-22 15:30  #1323(E6-2, 1st fl.)  Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model
515 2016-05-31 16:00  #1323(E6-2, 1st fl.)  Understanding 3D tokamak physics towards advanced control of toroidal plasma
514 2016-09-22 15:30  #1323(E6-2, 1st fl.)  Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model
513 2016-05-16 16:00  #1323(E6-2, 1st Fl.)  Tuning microwave cavities with biased nonlinear dielectrics for axion searches
512 2016-12-09 16:00  #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
511 2016-04-19 14:00  #1323(E6-2. 1st fl.)  Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability
510 2016-12-8 16:00  #1323(E6-2. 1st fl.)  Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator
509 2017-03-02 16:00  #1323(E6-2. 1st fl.)  “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”
508 2016-07-08 14:00  #1323(E6-2. 1st fl.)  Electronic quasiparticles in the quantum dimer model
507 2016-07-28 16:00  #1323(E6-2. 1st fl.)  Low Dimensional Electrons: On the Road to Hybrid Quantum Systems
506 2016-12-09 13:30  #1323(E6-2. 1st fl.)  Entanglement area law in strongly-correlated systems
505 2016-11-24 16:00  #1323(E6-2. 1st fl.)  Harmonic oscillator physics with single atoms in a state-selective optical potential
504 2016-11-29 16:00  #1323(E6-2. 1st fl.)  Symmetry Protected Kondo Metals and Their Phase Transitions
503 2016-11-11 16:00  #1323(E6-2. 1st fl.)  Dirac fermions in condensed matters