visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-04-13 10:00 
일시 April 13 (Fri.), 10am 
장소 #1323 (E6-2, 1st fl.) 
연사 Dr. Sungkun Hong 

Physics Seminar

 

Quantum meets Mechanics: from Quantum Information to Fundamental Research

 

Dr. Sungkun Hong

Vienna Center for Quantum Science and Technology, University of Vienna

 

April 13 (Fri.), 10am

#1323 (E6-2, 1st fl.)

 

 

Abstract:

Studying quantum aspects of macroscopic moving bodies is a new emerging field in quantum physics. The main experimental approach is cavity optomechanics, where photons in the cavity are used to measure and manipulate motional states of mechanical oscillators. Cavity optomechanics, together with advancements in microfabrication of mechanical devices, has allowed us to observe and control mechanical resonators at the quantum level. This opens new exciting possibilities for quantum information science and for studying quantum physics in hitherto untested macroscopic scales.

In this talk, I will describe two different quantum optomechanics experiments that I have been doing in Vienna. First, I will present our progress in utilizing on-chip optomechanical devices as a new resource for quantum information. Using micro-fabricated silicon structures, we demonstrated the generation of quantum-correlated photon-phonon pairs, the generation and retrieval of single phonons, and the remote entanglement between two mechanical modes, paving the way for telecom-compatible optical quantum networks. Future directions of the work will also be discussed. Next, I will introduce a novel, hybrid optomechanical system consisting of optically levitated nanoparticles and micro-fabricated photonic crystal cavity. The system combines ultra-high mechanical quality of the levitated nanoparticle and strong optical transduction from the optical cavity. It thus will allow for quantum coherent experiments on particle’s motions even at room temperature. I will discuss the current status of the experiment as well as future plans of the work, particularly the matter-wave interferometry in an unexplored mass regime.

 

Contact: Yongseop Kang, Administration Team (T.2599)

 

Department of Physics

번호 날짜 장소 제목
242 2015-12-11 13:30  E6-2, #1323  Quantum spin liquid in the 1/3 depleted triangular lattice Ba3(Ru1-xIrx)Ti2O9
241 2016-01-11 16:00  E6-2, #1323  Mott Physics in the Strong Spin-Orbit Coupling Regime
240 2016-09-29 16:00  E6-2, #1323  2016 Fall, Physics Seminar Serises file
239 2015-12-03 16:00  E6-2, #1323  Hybrid solid state spin qubits in wide bandgap semiconductors
238 2015-11-10 16:00  E6-2, #1323  Rapid heating of matter using high power lasers
237 2015-11-23 13:30  E6-2, #1323  What's Beyond the Standard Model? Lessons from Run I and what might come in Run II
236 2019-07-31 16:00  E6-2, #1323  Features of ballistic superconducting graphene file
235 2019-06-24 11:00  E6-2, #1323  Topological photonic anomalies file
234 2015-12-09 14:00  E6-2, #1323  SWELLABLE COLLOIDAL PARTICLES ARE SWELL
233 2015-12-02 16:00  E6-2, #1323  Samarium Hexaboride: Is it a Topological insulator?
232 2015-12-11 15:45  E6-2, #1323  Dynamical mean field theory studies on heavy fermion system
231 2015-12-01 16:00  E6-2, #1323  Introducing extra dimensions to spectroscopic studies of advanced quantum materials
230 2016-01-26 14:00  E6-2, #1323  Electrochemistry on Nano- and Atomic Levels: Scanning Probe Microscopy Meets Deep Data
229 2019-07-25 16:00  E6-2, #1323  Band topology of twisted bilayer graphene file
228 2015-08-03 10:30  E6-2, #1323 (Seminar Room)  Axion Search
227 2024-03-27 16:00  E6-2, #2502  [High Energy Theory Seminar] The Callan Rubakov Effect
226 2023-09-13 16:00  E6-2, #2502  [High Energy Theory Seminar] Cosmic Birefringence from Dark Photon
225 2023-05-31 16:00  E6-2, #2502  [High-Energy Theory Seminar] Resurgence and complex Chern-Simons theory
224 2024-01-16 16:00  E6-2, #2502  [High Energy Theory Seminar] Towards quantum black hole microstates
223 2023-04-05 16:00  E6-2, #2502  [High Energy Theory Seminar]Anomalies of Discrete 1-Form Symmetries in QCD-like Theories