visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 E6-2. 2nd fl. #2502 
일시 Jun. 18 (MON), 10:00 AM 
연사 Dr. Thibault VOGT 

Physics Seminar

 

 

Rydberg electromagnetically induced transparency and microwave-to-optical conversion using Rydberg atoms

 

 Dr. Thibault VOGT  

Centre for Quantum Technology, National University of Singapore

 

Jun. 18 (MON), 10:00 AM

E6-2. 2nd fl. #2502

 

The very large transition dipole moments of Rydberg atoms are responsible for strong long-range dipole-dipole interactions as well as very large couplings to external fields. Because of this property, Rydberg atoms have found direct applications for quantum sensing, quantum simulation, and non-linear optics at the few-photons level. I will describe a few examples realized in the Rydberg atom group at CQT.

In the first part of the talk, I will present our recent demonstration of coherent microwave-to-optical conversion via frequency mixing in Rydberg atoms [1]. In contrast to other physical systems being explored, our scheme requires no cavity and allows for free-space and broadband conversion due to the strong coupling of microwaves to Rydberg transitions. This result is promising for future quantum communication networks, as broadband interconversion of microwave and optical fields will be essential for connecting superconducting qubits and photonic qubits. I will discuss the recent strategies that we have developed for improving the efficiency of the conversion, which include the demonstration of three-photon electromagnetically induced transparency (EIT), and collinear frequency mixing [2,3].

In the second part, I will present our long-term goal of demonstrating spatially resolved imaging of Rydberg atoms, using Rydberg EIT in the presence of long-range dipole-dipole interactions. I will describe diverse characterizations of the effect of interactions on Rydberg electromagnetically induced transparency, and show that Lévy statistics describes well this many-body system [4,5].

[1] Han, J., Vogt, T., Gross, C., Jaksch, D., Kiffner, K., and Li, W. Coherent microwave-to-optical conversion via six-wave mixing in Rydberg atoms, Phys. Rev. Lett. 120, 093201 (2018)

[2] Vogt, T., Gross, C., Gallagher, T. F., and Li, W., Microwave-assisted Rydberg Electromagnetically induced transparency, arXiv:1802.00529, accepted for publication in Opt. Lett. (2018)

[3] Vogt, T., Gross, C., Han, J., and Li, W., Efficient microwave-to-optical conversion using Rydberg atoms, under preparation (2018)

[4] Han, J., Vogt, T., and Li, W., Spectral shift and dephasing of electromagnetically induced transparency in an interacting Rydberg gas, Phys. Rev. A 94, 043806 (2016)

[5] Vogt, T., Han, J., Thiery, A., and Li, W., Lévy statistics of interacting Rydberg gases, Phys. Rev. A 95, 053418 (2017)

 

Contact: EunJung Jo, Physics Dept., (jojo@kaist.ac.kr)

 

Department of Physics, KAIST

번호 일시 장소 연사 제목
312 2019. 8. 22 4PM & 8. 23 3PM  #1323, E6-2  Prof. Andrew N Cleland  Physics and Applications in Nanoelectronics and Nonomechanics file
311 October 18 (Thu.), 10:00 AM  #1323, E6-2  Dr. Duyoung Min  Understanding membrane protein folding using single-molecule force techniques file
310 July 30 (Tue), 4:00 PM  #1323, E6-2  Dr. Mingu Kang  Dirac fermions and flat bands in correlated kagome metals file
309 May 30 (Thu.), 16:00 PM  #1323, E6-2  Prof. Chang-Hee Cho  Tuning the excitonic properties of semiconductors with light-matter interactions file
308 June 4 (Tue.), 5:00 PM  #1323, E6-2  Prof. Minsu Kim  Stochastic nature of bacterial eradication using antibiotics file
307 May 24 (Fri.), 16:00 PM  #1323, E6-2  Prof. Soonjae Moon  Infrared spectroscopy study on metal-insulator transitions in layered perovskite iridates file
306 May 31 (Fri.), 11:00 AM  #1323, E6-2  Prof. Guido Burkard  Cavity QED with Spin Qubits file
305 Apr.19 (Fri.), 11:00 AM  #1323, E6-2  Dr. Ji-Sang Park  First-principles studies of semiconductors for solar cell applications file
304 April 4 (Thu.), 16:00 PM  #1323, E6-2  Prof. Su-Hyun Gong  Chiral spin-photon interaction at nanoscale file
303 May 9 (Thu.), 16:00 PM  #1323, E6-2  Prof. Kwang Geol Lee  Quantum Optical Sensing Using Single Photons And Single Photon Emission from Single Emitters file
302 May 9 (Thu.), 16:00 PM  #1323, E6-2  Prof. Kwang Geol Lee  Quantum Optical Sensing Using Single Photons And Single Photon Emission from Single Emitters file
301 April 23 (Tue.), 4:00 PM  #1323, E6-2  Prof. Johan Chang  From Mott physics to high-temperature superconductivity file
300 April 11 (Thu.), 16:00 PM  #1323, E6-2  Prof. Joo-Hyoung Lee, GIST  Massive screening for cathode active materials using deep neural network file
299 May. 8th (Wed), 16:00  E6 Room(#1323)  Jieun Lee  Imaging valley dependent electron transport in 2D semiconductors file
298 April 26 (Fri.), 4:00 PM  #1323, E6-2  Dr. Soonwon Choi  Robust Quantum Metrology using Strongly Interacting Spin Ensembles and Quantum Convolutional Neural Network file
297 June 17 (Mon.), 10:30 AM  #1323, E6-2  Dr. See-Hun Yang  Chiral Spintronics file
296 May 1 (Wed), 4:00 PM  #1323, E6-2  Dr. Sungkyun Choi  Raman and x-ray scattering study on correlated electron systems: two case examples file
295 July 9 (Mon.), 14:00 PM  #1323, E6-2  Prof. Cesar A. Hidalgo, MediaLab, MIT  The principles of collective learning file
294 May 2 (Thu.), 4:00 PM  #1323, E6-2  Prof. Joon Ik Jang  Anomalous optical properties of halide perovskites file
293 June 28 (Fri.), 13:30 PM  #1323, E6-2  Dr. Yusuke Kozuka  Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures file