visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-01-12 11:00 
일시 Jan 12th (Wed), 11:00 AM 
장소 Zoom and E6 #1323 
연사 Joonseok Hur (MIT) 

 

Title: Spectroscopic study of trapped ions towards probing dark matter and new physics

 

Speaker: Joonseok Hur (MIT)

 

January 12th (Wednesday), 11:00, E6 #1323 &

Zoom link: https://kaist.zoom.us/j/86232436126

 

 

Historically, precise atomic spectroscopy has led to new physics in many instances. Precision low-energy experiments may thus supplement high-energy and astrophysical approaches. It has been proposed to measure the isotope shifts (ISs) in ions to probe new physics using King plots [1], a two-dimensional graph that maps the measured ISs [2]. The Standard Model (SM) predicts in the leading order that the points in King plots should lie on a straight line. Departure from such linearity is unambiguously observed in our recent experiments with narrow optical transitions in trapped ions [3]. However, the contribution of higher-order corrections to the non-linearity within the SM complicates the test. The sources of the observed violation should be examined carefully to decouple the SM corrections arising from nuclear physics from possible new-physics contributions.

Here I will present our latest experimental and theoretical efforts to observe the non-linearity, identify its physical origin, and obtain the bound on dark boson-mediated interaction as a particular type of new physics that is of increasing interest. Future works will be discussed subsequently.

 

[1] J. C. Berengut et al., Physical Review Letters 120, 091801 (2018); V. V. Flambaum, A. J. Geddes, and A. V. Viatkina, Physical Review A 97, 032510 (2018); C. Delaunay et al., Physical Review D 96, 093001 (2017).

[2] W. H. King, Isotope Shifts in Atomic Spectra (Plenum Press, New York, 1984).

[3] I. Counts*, J. Hur* et al., Physical Review Letters 125, 123002 (2020) for the early stage of the work.

 

 

 

Contact: Myeongsoo Kang (mskang@kaist.ac.kr)

번호 날짜 장소 제목
544 2018-09-07 15:00  학술문화관 (E9), 2층 양승택 오디토리움  Recent developments in density functional theory: From new functionals to the nature of the chemical bond file
543 2016-05-17 11:00  창의학습관(E11), 406호  The CERN Resonant WISP Search: Development, Results and Lesson-Learned
542 2022-05-13 16:00  자연과학동(E6-2) 1st fl. #1323  High-fidelity iToffoli gate for fixed-frequency superconducting qubits file
541 2021-11-02 16:00  자연과학동(E6-2) #1323  Metrology of Band Topology via Resonant Inelastic X-ray Scattering file
540 2017-12-13 13:30  자연과학동 대형강의실 (1501호)  KAIST-KIAS Joint Workshop in Theoretical Sciences 개최 file
539 2021-05-27 16:00  온라인  찾아가는 물리연구 현장(유럽 입자물리학연구소 소개) file
538 2018-08-01 11:00  양분순 빌딩 (E16-1) 207호  Future of AI: Is the brain a computer? file
537 2022-04-01 16:00  Zoom webinar  High-field Electron Transport and Interaction Induced Phenomena in 2D Materials file
536 2020-09-14 17:30  Zoom webinar  KAIST Global Forum for Spin and Beyond (Third Forum) file
535 2022-05-13 14:30  Zoom webinar  Topological Superconducting Spintronics Towards Zero-Power Computing Technologies file
534 2020-09-22 09:30  Zoom webinar  Physics and applications of soliton microcombs(Quantum- & Nano-Photonics) file
533 2020-08-17 20:00  Zoom webinar  Using magnetic tunnel junctions to compute like the brain file
532 2021-06-08 10:00  Zoom webinar  Photonic crystal devices for sensing file
531 2021-04-19 19:00  Zoom webinar  Evidence of Electrical Switching in Antiferromagnets and Coherent Spin Pumping file
530 2020-08-25 20:00  Zoom webinar  KAIST Global Forum for Spin and Beyond (Second Forum) file
529 2020-09-28 17:30  Zoom webinar  KAIST Global Forum for Spin and Beyond(Fourth Forum) file
528 2021-12-03 16:00  Zoom webinar  Nonequilibrium Heat Transport in Elemental Metals Probed by an Ultrathin Magnetic Thermometer file
527 2021-05-17 17:00  Zoom webinar  Spin current generation and detection in uniaxial antiferromagnets file
526 2021-12-03 14:30  Zoom webinar  Topological Spin Textures: Skyrmions and Beyond file
525 2021-04-09 10:00  Zoom webinar  Integrated Lithium Niobate Photonics file