visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

The principles of collective learning

2018.07.06 16:49

admin 조회 수:4345

날짜 2018-07-09 14:00 
일시 July 9 (Mon.), 14:00 PM 
장소 #1323, E6-2 
연사 Prof. Cesar A. Hidalgo, MediaLab, MIT 

 

Physics Seminar

 

 

The principles of collective learning

 

Prof. Cesar A. Hidalgo

(MIT, MediaLab)

 

July 9 (Mon.), 14:00 PM

#1323, E6-2

 

 

Abstract:

 

How do economies enter new economic activities? In this talk, I will summarize recent advances in the study of economic diversification, knowledge diffusion, and collectivelearning. I will start by presenting the three basic principles of collective learning: the principle of improvement, the principle of relatedness, and the principle of knowledge intensity. Then, I will move to more recent findings showing how to define optimal strategies within the constraints defined by these principles, how to unpack the idea of relatedness of activities by using data on the work history of all of the individuals in a large country, and what are the consequences of these principles for the spatial distribution of economic activity. Finally, I will present work on the creation and construction of large scale data visualization tools (datausa.io datachile.io dataafrica.io atlas.media.mit.edu) and show how these are changing the way in which governments and companies organize and deliver their data.

Contact : Prof. Hawoong Jeong (hjeong@kaist.ac.kr)

 

Department of Physics, KAIST

 

번호 날짜 장소 제목
333 2018-12-07 14:30  E6-2. 1st fl. #1323  Spin generation from heat and light in metals file
332 2018-12-07 16:00  E6-2. 1st fl. #1323  Novel probes of interacting electrons in 2D systems file
331 2018-12-11 16:00  E6-2. 1st fl. #1323  Natural compact representation of Matsubara Green’s functions: applications to analytic continuation and quantum many-body simulations file
330 2018-12-16 16:00  E6-2. 1st fl. #1323  Lectures on 2d Conformal Field Theory file
329 2018-12-26 16:00  E6-1. 3rd fl. #3434  Informal Workshop on Topology and Correlation file
328 2018-12-26 16:00  E6-2. 1st fl. #1323  Brane-like defect in 3D toric code file
327 2018-12-27 16:00  E6-2. 1st fl. #1323  Quantum Innovation (QuIN) Laboratory file
326 2019-01-07 15:00  E6-2. 2st fl. #2501  Many-Body Invariants for Multipoles in Higher-Order Topological Insulators file
325 2019-01-09 16:00  E6-2. 2nd fl. #2501  Molecular Mott state in the deficient spinel GaV4S8 file
324 2019-01-23 16:00  Rm. C303, Creation Hall (3F), Munji Campus  Ultrasensitive Microwave Bolometer: Opportunity for Axion Detectors file
323 2019-02-21 16:00  #5313, E6-2  B-meson charged current anomalies - Theoretical status file
322 2019-02-25 16:00  Rm. 1501 (E6)  Spring 2019: Physics Colloquium file
321 2019-03-21 16:00  RM. 1323, E6-2  Spring 2019: Physics Seminar Serises file
320 2019-03-26 15:00  E6-2. 2st fl. #2501  Consideration of thermal Hall effect in frustrated and un-frustrated quantum magnets file
319 2019-03-29 14:30  E6-2. 1st fl. #1323  Epitaxial Multifunctional Oxide Thin Films for Novel Electronics file
318 2019-03-29 16:00  E6-2. 1st fl. #1323  Coherent Quantum Control and Magnetism on atoms – Trapped ion and ESR STM file
317 2019-04-04 16:00  #1323, E6-2  Chiral spin-photon interaction at nanoscale file
316 2019-04-11 16:00  #1323, E6-2  Massive screening for cathode active materials using deep neural network file
315 2019-04-19 11:00  #1323, E6-2  First-principles studies of semiconductors for solar cell applications file
314 2019-04-19 14:30  E6-2. 1st fl. #1323  A family of finite-temperature electronic phase transitions in graphene multilayers file