visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-04-14 16:00 
일시 4pm, 14th April 
장소 E6 1323 
연사 신승우 (KAIST 물리학과) 
Title: Holographic tomography of dielectric tensors at optical frequency
 
Speaker: 신승우 (KAIST 물리학과)
 
Date: 4pm, 14th April
 
Place: E6 1323 (Available seats can be limited because of the COVID situation.)
 
Abstract
Ranging from material science to soft matter physics, liquid-crystal displays, and tissue biology, three-dimensional (3D) optically anisotropic structures have been investigated for versatile purposes in various research areas. However, conventional methods indirectly access information of 3D anisotropic structure, due to the lack of direct imaging modality for 3D anisotropy.
 
Optical diffraction tomography (ODT) techniques have been successfully demonstrated in reconstructing 3D refractive index (RI) distribution for various research areas. However, applications of the techniques have been restricted to optically isotropic objects, due to the scalar wave assumption in the ODT principles. This assumption severely limits broader applications of the ODT techniques to optically anisotropic objects, particularly for liquid crystalline materials and filament structures in biological cells.
 
Here, we present dielectric tensor tomography as a label-free modality for reconstructing 3D dielectric tensors of anisotropic structures. Dielectric tensor, a physical descriptor for vectorial light-matter interaction, serves intrinsic information of optical anisotropy including principal refractive indices and optic axes. By measuring diffracted electric fields and inversely solving a vectorial wave equation, the present method offers 3D distributions of dielectric tensors, principal RIs, and optic axes of anisotropic structures. The feasibility of the present method is validated by numerical simulations and experimental results. We demonstrate quantitative tomographic measurements of various nematic liquid-crystal structures and their fast 3D nonequilibrium dynamics.
번호 날짜 장소 제목
413 2022-10-26 10:00  E6-2 #2502  Replica Higher-Order Topology of Hofstadter Butterflies in Twisted Bilayer Graphene
412 2022-10-24 16:00  E6 #1501(공동강의실)  Physics Colloquim(Fall 2022) file
411 2022-10-13 16:00  E6-2 #1323  (광학분야 세미나) Ultrafast Optics for Ultra-Precision Metrology and Realization of Flexible/Stretchable Laser-Induced-Graphene Electronics
410 2022-10-07 11:00  E6-2 #1323  [Update 세미나 영상] (응집물리 세미나) Competing orders in a vanadium-based kagome metal monolayer file
409 2022-10-06 13:00  E6 #1323  Counting States with Global Symmetry
408 2022-10-04 16:00  E6 #2501  Distinguishing 6d (1, 0) SCFTs
407 2022-09-30 16:00  E6-2. 1st fl. #1323 & Zoom  Spin-orbit torque-based spintronic devices file
406 2022-09-30 14:30  E6-2. 1st fl. #1323 & Zoom  Putting a spin on the Josephson effect file
405 2022-09-29 16:00  E6-2 #1323  (광학분야 세미나) Ultrafast THz Field-Induced Nonlinear Optics
404 2022-09-23 11:00  E6-2 #1323  [Update 세미나 영상] (응집물리 세미나) Steady Floquet-Andreev states in graphene Josephson junctions file
403 2022-09-22 16:00  E6-2 #1323  (광학분야 세미나) Quasi-particle-like optical vortices in magnetic materials
402 2022-09-22 11:00  E6-1 #1323  2022 가을학기 응집물리 및 광학 세미나 전체 일정 file
401 2022-09-21 16:00  College of Natural Science E6-2, Rm. 1323  Materials and Device Nanofabrication of Optical Metasurfaces file
400 2022-09-21 10:30  E6-1 #1501  [Update 세미나 영상] Distinguished Lecture 'The Magic of Moiré Quantum Matter' Prof. Pablo Jarillo-Herrero(Department of Physics, MIT) file
399 2022-09-15 13:00  E6-2, #1323  AdS black holes: a review
398 2022-08-18 10:00  E6-1 #1323  Disorder-driven phase transition in the second-order non-Hermitian skin effect
397 2022-08-17 11:00  E6-6 #118호  Robust Hamiltonian Engineering of Large Quantum Systems (큰 양자시스템의 견고한 해밀토니안 엔지니어링)
396 2022-08-12 10:00  E6-1 #1323  Twisted Bilayer Magnets file
395 2022-08-12 10:00  E6-1 #1323  Twisted Bilayer Magnets file
394 2022-08-09 14:00  KI building (E4), Lecture Room Red (B501)  Quantum biology in fluorescent protein: a new model system to study quantum effects in biology file