visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 May 19, 2016 (Thur.) 3PM, 
일시 May 19, 2016 (Thur.) 3PM 
연사 Dr. Michael Betz, CERN 

 

The CERN Resonant WISP Search: Development, Results and Lesson-Learned

   

May 19, 2016 (Thur.) 3PM, #5318(E6-2, 5th fl.)

Dr. Michael Betz, CERN

   

Weakly Interacting Sub-eV Particles (WISPs) could reveal the composition of cold dark matter in the universe and explain a large number of astrophysical phenomena. Despite their strong theoretical motivation, these hypothetical particles could not be observed in any experiment so far.

The "CERN Resonant WISP Search"(CROWS) probes the existence of WISPs using microwave techniques.

The heart of the table-top experiment are two high-Q microwave cavity resonators. The `emitting cavity` is driven by a power amplifier at 3 GHz, resulting in the build-up of a strong electromagnetic field inside. The `receiving cavity` is placed in close vicinity and connected to a sensitive microwave receiver.

Most theories predict a weak coupling between the two cavities due to a Photon to WISP conversion process. CROWS tries to observe that coupling, while mitigating electromagnetic crosstalk with a high-end (~ 300 dB) electromagnetic shielding enclosure for the receiving part of the experiment.

Although no WISPs were detected in the most sensitive measurement-runs in 2013, a previously unexplored region in the parameter space was opened up. For `Hidden Sector Photons`, a prominent member of the WISP family, the result corresponds to an improvement in sensitivity over the previous laboratory exclusion limit by a factor of ~7.

This talk shall give a brief introduction to WISPs, the experimental search efforts worldwide and then focus on the design and development of the CROWS experiment, which happened in the framework of the authors PhD.

The encountered engineering challenges and their solutions will be highlighted. This includes the high performance EMI shielding ( 300 dB through several layers), operating electronics in strong (3 T) magnetic fields, optical signal transmission and high sensitivity (P < 1E-24 W) microwave signal detection. The operation procedure and the lessons learned during various experimental runs are shown. Furthermore, several ideas are proposed, on how to improve the experiment and its sensitivity further.

 

Contact: T.8166(CAPP Administration Office)

번호 일시 장소 연사 제목
공지 2019/09/18 - 12/5  Seminar Room #1323  Prof. David Schuster and etc.  Fall 2019: Physics Seminar Serises
공지 2019/09/02 - 12/09  Seminar Room 1501  이호성 박사 (한국표준과학연구원) and etc.  Fall 2019: Physics Colloquium
121 Mar. 24 (Fri.), 4:00 PM  #1323 (1st fl. E6-2)  Dr. SangWook Lee  Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties
120 Mar. 24 (Fri.), 2:30 PM  #1323 (1st fl. E6-2).  Dr. MahnSoo Choi  Topological Dynamics
119 Mar. 2nd (Thu), 4:00 p.m  #1323(E6-2. 1st fl.)  Dr. Jonathan Denlinger, Lawrence Berkeley National Lab  “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”
118 Feb. 1 (Wed.), 2p.m.  #1323(E6-2. 1st fl.)  Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo  Quantum electron optics using flying electrons
117 2017.1.9(Mon), 4PM  Lecture Hall, College of Natural Sciences [#1501,E6-2]  Prof. John Michael Kosterlitz, Brown University  Topological Defects and Phase Transitions" file
116 Dec. 12th (Mon)  1:30p.m. #1323(E6-2. 1st fl.)  Dongjoon Song , AIST  “Possible symmetry in the phase diagrams of electron- & hole-doped cuprate high-Tc superconductors”
115 Dec. 9(Fri), 1:30 p.m.  #1323(E6-2. 1st fl.)  Dr. Jae Yoon Cho, POSTECH  Entanglement area law in strongly-correlated systems
114 Dec. 9(Fri), 4p.m.  #1323(E6-2. 1st fl.  Dr. Kun Woo Kim, KIAS  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
113 Dec. 8(Thu) 4p.m.  #1323(E6-2. 1st fl.)  Dr. Jinhyoung Lee, Hanyang University  Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator
112 Nov. 29(Tue) 4p.m.  #1323(E6-2. 1st fl.)  Dr. SungBin Lee, KAIST  Symmetry Protected Kondo Metals and Their Phase Transitions
111 Nov. 24(Thu) 4p.m.  #1323(E6-2. 1st fl.)  Dr. Jai-Min Choi, Chonbuk National Univiersity  Harmonic oscillator physics with single atoms in a state-selective optical potential
110 Nov. 18th (Fri) 10:30 a.m.  #5318(5th fl.)  Dr. 최 순 원, Havard University  Non-equilibrium many-body spin dynamics in diamond
109 Nov. 16 (Wed), 4p.m.  #1323(E6-2. 1st fl.)  Dr. Heung-Sik Kim , University of Toronto  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
108 Nov. 10th(Thu) 4 p.m.  E6-2. #1323(1st fl.)  Prof. Min Seok Jang, Electrical Engineering, KAIST  Low Dimensional Active Plasmonics and Electron Optics in Graphene
107 Nov. 11th (Fri), 4 p.m.  #1323(E6-2. 1st fl.)  Dr. Bohm-Jung Yang, SNU  Dirac fermions in condensed matters
106 Nov. 11th(Fri), 1:30 p.m.  #1323(E6-2. 1st fl.)  Dr. Keun Su Kim, POSTECH  Bandgap Engineering of Black Phosphorus
105 Nov. 04 (Fri), 3:00 PM  E6-2. #1323(1st fl.)  Dr. Dohun Kim, Department of Physics and Astronomy, SNU  Quantum information experiments using few electron spins in semiconductors
104 Nov. 04 (Fri), 1:30 PM  E6-2. #1323(1st fl.)  Dr. Jonghyun Song, Department of Physics, Chungnam National University  Exotic phenomena at oxide LaAlO3/SrTiO3 hetero-interface and their applications
103 Nov. 1st (Tue), 10:30AM  #1323(E6-2 1st fl.)  Dr. Gadi Eisenstein, Technion  Time scale dependent dynamics in InAs/InP quantum dot gain media
102 Oct. 27th(Thu) 4PM  #1323(E6-2)  Dr. 이 강 희, KAIST, Mechnical Engineering  Terahertz Metal Optics