visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-08-04 11:00 
일시 2015/08/04, 11PM 
장소 B501, Room Red, KI bldg. 5nd fl. 
연사 Dr. Eric Jin Ser Lee(Univ. of Manitoba, Canada) 

Propagation of ultrasound through two- and three-dimensional strongly scattering media

2015/08/04(TUE), 11PM, B501(Room Red, KI bldg. 5nd fl.)
Dr. Eric Jin Ser Lee,  Department of Physics and Astronomy, Univ. of Manitoba, Canada

 

 

During my Ph. D study at the University of Manitoba, I have investigated the propagation of ultrasound through two- and three-dimensional strongly scattering media, with either random or ordered internal structures, through experiments and finite element simulations.  All media investigated have strong scattering resonances, leading to novel transport behaviour. 

 

The two-dimensional samples consist of nylon rods immersed in water.  Nylon fishing lines under tension are used as two-dimensional scatterers.  Note that since the rods are parallel and of uniform diameter, there is negligible scattering of waves out of the plane perpendicular to the rods, so that the system appears two-dimensional from the wave point of view for propagation in this plane.  When nylon rods are surrounded by water, they exhibit strong scattering resonances.  In such an environment, the nylon scattering resonance can couple with the propagating mode through water to create a bandgap.  This is a called hybridization gap.  When the nylon rods are arranged in a triangular lattice to form two-dimensional phononic crystals, very unusual dispersion properties are observed when the lattice constant is adjusted so that Bragg and hybridization gaps overlap in frequency.  This behaviour is attributed to the competition between two co-existing propagating modes, leading to a new method for tuning bandgap properties and adjusting the transmission by orders of magnitude. 

 

The three-dimensional media were fabricated by brazing aluminum beads together to form a disordered porous solid network with either vacuum in the pores.  This system is of particular interest because it has been shown to exhibit Anderson localization of ultrasound.  With such system, the density of states (DOS) was investigated.  It is the number of vibrational states per unit frequency range per unit volume.  The DOS is a fundamental property of any system and can influence not only wave transport but also the possibility of forming localized states.  The DOS was measured by directly counting the modes in the frequency domain.  At intermediate frequencies, the DOS was found to be approximately independent of frequency, while at higher frequencies, the frequency dependence was consistent with traditional DOS models.  Furthermore, the level statistics, which describe the distribution of the separations between neighbour modes in frequency, of the modes was investigated to determine the conditions under which level repulsion occurs.  As the sample becomes larger to have more modes, the modes start to overlap and repel each other so that level repulsion effects become important.  Consequently, the level statistics were observed to become closer to GOE predictions as the sample size increased.  For the last, as there is a transition from diffusive to localized regime around the lower bandgap edge, a transition from GOE to Poisson distribution is observed.

 

Contact: Prof. YongKeun Park, Physics Dept., (yk.park@kaist.ac.kr)

 

 

번호 날짜 장소 제목
387 2019-04-04 16:00  #1323, E6-2  Chiral spin-photon interaction at nanoscale file
386 2016-04-04 09:30  KAIST Natural Science Building (E6-2), RM #4314  Radio frequency engineering
385 2023-04-05 16:00  E6-2, #2502  [High Energy Theory Seminar]Anomalies of Discrete 1-Form Symmetries in QCD-like Theories
384 2017-04-05 12:00  Room 101, Creative Learning Bldg.(E11)  2017년 4월 첫수 융합포럼 개최 안내(물리학과 & 원자력 및 양자공학과 공동 개최)/The First Wednesday Multidisciplinary Forum in April 2017 organized by Dept. of Physics & Dept. of Nuclear & Quantum Engineering file
383 2018-04-06 10:00  #2502, E6  Entanglement and thermalization in many-body systems: recent progress file
382 2016-04-06 15:30  E6-2, RM #1323  Superconducting Quantum Interference Devices for Precision Detection
381 2017-04-06 16:00  IBS CAPP seminar room, Creation Hall (3F), KAIST Munji Campus  For whom the Belle tolls
380 2023-02-20 16:00  Room 1323, KAIST Natural Sciences Lecture Hall(E6)  Physics of ferromagnet/superconductor junctions
379 2023-08-23 16:00  E6-2, #1322  [High Energy Theory Seminar] A spacetime tensor network for AdS3/CFT2
378 2023-08-24 11:00  E6, Rm#1323  Advancing magnonic metamaterials: spin waves in nanomagnetic arrays
377 2020-08-25 20:00  Zoom webinar  KAIST Global Forum for Spin and Beyond (Second Forum) file
376 2017-08-16 16:00  #1322 (E6-2. 1st fl.)  Phonon-driven spin-Floquet valleytro-magnetism file
375 2020-08-17 20:00  Zoom webinar  Using magnetic tunnel junctions to compute like the brain file
374 2022-08-01 10:00  E6 #1501 & Zoom  [Update 세미나 영상] James Webb Space Telescope & OTE Commissioning
373 2017-08-31 14:00  #5318(E6-2. 5th fl.)  “Berry phase and nonlinear response: photocurrent in noncentrosymmetric insulators and Weyl semimetals” file
372 2016-08-04 14:30  KAIST Natural Science Building (E6-5), EDU 3.0 Room(1st fl.)  Relational Logic (with applications to Quantum Mechanics, String Theory, Cosmology, Neutrino Oscillations, Statistical Mechanics)
371 2022-08-08 14:00  E6-2 #2502  Classical Shadow Tomography for Analog Quantum Simulators
370 2022-08-09 14:00  KI building (E4), Lecture Room Red (B501)  Quantum biology in fluorescent protein: a new model system to study quantum effects in biology file
369 2022-08-12 10:00  E6-1 #1323  Twisted Bilayer Magnets file
368 2022-08-12 10:00  E6-1 #1323  Twisted Bilayer Magnets file