Quantum electron optics using flying electrons
2017.01.26 23:43
장소 | #1323(E6-2. 1st fl.) |
---|---|
일시 | Feb. 1 (Wed.), 2p.m. |
연사 | Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo |
Quantum electron optics using flying electrons
Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo
Feb. 1 (Wed.), 2p.m. #1323(E6-2. 1st fl.)
Abstract: Quantum electron optics is a field in which one manipulates quantum states of propagating electrons. Combined with technologies for confining and manipulating single electrons, it allows us to investigate the scattering and interference of electrons in a unit of a single electron. The necessary elements of quantum electron optics experiments include single electron beam splitter, phase shifter, Coulomb coupler, single electron source and detector, spin-orbit path and electron-pair splitter.
In this talk, we present development of some of these elements. The beam splitter and phase shifter are implemented in our original two-path interferometer [1-3]. This interferometer has been shown to be the only reliable system for the measurement of the transmission phase shift of electrons [4,5]. To suppress decoherence induced by the electron-electron interaction and enhance the interference visibility, we recently developed a two-path interferometer of depleted channels, where single electrons are injected by means of surface acoustic waves (SAWs). We also confirmed that a single electron in a static quantum dot (single electron source) can be adiabatically transferred into a SAW-driven moving quantum dot [6], a necessary ingredient for achieving the high interference visibility of a single flying electron.
Quantum electron optics also targets the manipulation of spins of flying single electrons. We found that the spin information of one or two electrons can be transferred between distant quantum dots, which work as the single electron source and detector, with the fidelity limited only by the spin flips prior to the spin transfer [7,8]. We also realized an electron-pair splitter that can be used to split spin-entangled electrons in a moving dot into different moving dots. Combined with single spin manipulation using the spin-orbit interaction (spin-orbit path) [9], this splitter should allow for Bell measurement of electron spins.
This work is in collaboration with S. Takada (now at Institut Neel), R. Ito and K. Watanabe at the University of Tokyo, B. Bertrand, S. Hermelin, T. Meunier, and C. Bäuerle at Institut Neel, and A. Ludwig and A. D. Wieck at Ruhr-Universität Bochum.
[1] M. Yamamoto et al., Nature Nano. 7, 247 (2012)..
[2] A. Aharony et al., New J. Phys. 16, 083015 (2014).
[3] T. Bautze et al., Phys. Rev. B 89, 125432 (2014).
[4] S. Takada et al., Phys. Rev. Lett. 113, 126601 (2014).
[5] S. Takada et al., Appl. Phys. Lett. 107, 063101 (2015).
[6] B. Bertrand et al., Nanotechnology 27, 204001 (2016).
[7] S. Hermelin et al., Nature 477, 435 (2011).
[8] B. Bertrand et al., Nature Nano. 11, 672 (2016).
[9] H. Sanada et al., Nature Phys. 9, 280 (2013).
Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)
Center for Quantum Coherence in Condensed Matter, KAIST
댓글 0
번호 | 일시 | 장소 | 연사 | 제목 |
---|---|---|---|---|
공지 | 2019/09/18 - 12/5 | Seminar Room #1323 | Prof. David Schuster and etc. | Fall 2019: Physics Seminar Serises |
공지 | 2019/09/02 - 12/09 | Seminar Room 1501 | 이호성 박사 (한국표준과학연구원) and etc. | Fall 2019: Physics Colloquium |
175 | June 27 (Thu), 2:00 PM | #2502, E6-2 | Hyun-Yong Lee |
Gapless Kitaev Spin Liquid to Loop and String Gases
![]() |
174 | Jun. 16 (Thu) 4PM | #1323(E6-2, 1st fl.) | Hyochul Kim, Samsung Advanced Institute of Technology | Quantum information processing using quantum dots and photonic crystal cavities |
173 | Dec. 11 (Fri.), 04:00 PM | online | Hyobin Yoo(Sogang Univ.) | Atomic and electronic reconstruction at van der Waals interface in twisted 2D materials |
172 | August. 1st (Thu), 14:00 | E6 Room(#1323) | Hyeok Yoon |
Low-density Superconductivity in SrTiO3 Probed by Planar Tunneling Spectroscopy
![]() |
171 | August 27 (Tue.), 4:00PM | Rm. 1323, E6 | Hiroshi Eisaki |
Critical current properties of Fe-based superconductors
![]() |
170 | January 17 (Fri), 4:00 PM | #1323, E6-2 | Hiroki Ikegami |
Symmetry Breaking and Topology in Superfluid 3He
![]() |
169 | September 26 (Thu.), 16:00 PM | #1323, E6-2 | Han Seb Moon |
Entanglement Swapping with Autonomous Polarization-Entangled Photon-Pairs from Warm Atomic Ensemble
![]() |
168 | December 27(Fri.), 15:00 | E6-2,#5318 | Han Gyeol Suh |
The superconducting order parameter puzzle of Sr2RuO4
![]() |
167 | Dec 27 (Fri), 3:00 PM | #5318, E6-2 | Han Gyeol Suh |
The superconducting order parameter puzzle of Sr2RuO4
![]() |
166 | Nov. 18th (Fri) 10:30 a.m. | #5318(5th fl.) | Dr. 최 순 원, Havard University | Non-equilibrium many-body spin dynamics in diamond |
165 | Oct. 27th(Thu) 4PM | #1323(E6-2) | Dr. 이 강 희, KAIST, Mechnical Engineering | Terahertz Metal Optics |
164 | June 28 (Fri.), 13:30 PM | #1323, E6-2 | Dr. Yusuke Kozuka |
Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures
![]() |
163 | Apr. 08 (Fri.), 13:30 PM | E6-2. 1st fl. #1501 | Dr. Yunkyu Bang, Chonnam National Univ. | Theoretical Overview of Iron-based superconductors and its future |
162 | Sep. 26 (Tue.), 11AM | #1323 (E6-2. 1st fl.) | Dr. Yukiaki Ishida / ISSP, University of Tokyo | Time-resolved ARPES study of Dirac and topological materials |
161 | Nov. 1 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. YoungWook Kim |
Squeezing the best out of 2D materials
![]() |
160 | Apr. 19 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. YoungWoo Nam |
A family of finite-temperature electronic phase transitions in graphene multilayers
![]() |
159 | 2015/11/06, 4:30 PM | E6-2, #5318 | Dr. Youngkuk Kim (University of Pennsylvania) | Topological Dirac line nodes in centrosymmetric semimetals |
158 | Mar. 16 (Fri.), 04:0 PM | E6-2. 1st fl. #1323 | Dr. YoungDuck Kim |
Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics
![]() |
157 | May 13 (Fri.), 1:30 PM | E6. #1501(1st fl.) | Dr. Young-Woo Son, Dept. of Physics, KIAS | Aperiodic crystals in low dimensions |
156 | April 11 (Wed), 4:00pm | #1323 (E6-2, 1st fl.) | Dr. Young-Sik Ra |
Non-Gaussian states of multimode light generated via hybrid quantum information processing
![]() |