visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-11-10 16:00 
일시 Nov. 10th(Thu) 4 p.m. 
장소 E6-2. #1323(1st fl.) 
연사 Prof. Min Seok Jang, Electrical Engineering, KAIST 

Low Dimensional Active Plasmonics and Electron Optics in Graphene

 

Nov. 10th(Thu) 4 p.m., E6-2. #1323(1st fl.)
Prof. Min Seok Jang, Electrical Engineering, KAIST

 

 

The field of plasmonics has been attracting wide interest because it has provided routes to guide and localize light at nanoscales by utilizing metals as its major building block. Meanwhile, graphene, a two-dimensional lattice of carbon atoms, has been regarded as a candidate material for future electronic applications owing to its remarkably high carrier mobility and superior thermal properties. Both research fields have been growing rapidly, but quite independently. However, a closer look reveals that there are actually numerous similarities between them, and it is possible to extract useful applications from these analogies. Even more interestingly, these research fields are recently overlapping to create a new field of research, namely graphene plasmonics, which offers a unique platform to dynamically modulate light with unprecedented spatial and temporal resolutions.

 

In this talk, I will present a few examples of these intertwined topics. First, I will introduce “rainbow trapping” structures, broadband plasmonic slow light systems composed of single or double negative materials, and clarify the mode-conversion mechanism and the light-trapping performance by analyzing the dispersion relation. I will then show that electrons in graphene exhibit photon-like dynamics and how this analogy between photonics and electronics can inspire to solve an interesting problem of electron backscattering in graphene field effect transistors. Finally, I will present how the surface plasmons in graphene can be harnessed to create infrared metasurfaces that have tunable optical properties including extreme light-matter interaction and macroscopic modulation of light absorption and thermal emission.

 

Contact: Contact: Min-kyo Seo, Physics Dept. (T.2517)

 

번호 날짜 장소 제목
402 2023-07-20 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP Seminar] Cosmoparticle Physics of Dark Universe file
401 2022-07-21 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  Quintessential axions file
400 2022-09-21 16:00  College of Natural Science E6-2, Rm. 1323  Materials and Device Nanofabrication of Optical Metasurfaces file
399 2015-03-13 14:00  Connect Room, KI Bldg.  The 15th Innovative Workshop on Soft/Bio Materials file
398 2015-12-09 11:00  E4(KI Building), Connect room (2nd fl.)  Functional Imaging & Monitoring of Brain & Breast with Diffuse Light
397 2015-12-17 11:00  E4(KI Building), Matrix Hall (2nd fl.)  Wavefront engineering for in-vivo Deep brain imaging
396 2015-07-23 13:30  E4, B401  Enhanced ZnO based UV photonics and related applications file
395 2023-05-17 14:00  E6 #1323  Optical Response in the multilayer thin films
394 2023-04-28 11:00  E6 #1323  Tkachenko wave: From the modern field theory viewpoint
393 2022-10-06 13:00  E6 #1323  Counting States with Global Symmetry
392 2022-04-13 10:30  E6 #1323/zoom  Harnessing topology and correlations from singularities in 3d-kagome metals
391 2022-01-11 15:00  E6 #1501  Ultrafast optical studies on CDW collective modes of the Weyl-CDW (TaSe4)2I file
390 2022-01-26 13:00  E6 #1501  An Introduction to Cohomology groups file
389 2022-07-14 14:15  E6 #1501 & Zoom  Hund and electronic correlations in ruthenium-based systems
388 2022-08-01 10:00  E6 #1501 & Zoom  [Update 세미나 영상] James Webb Space Telescope & OTE Commissioning
387 2022-07-14 13:30  E6 #1501 & Zoom  Electronic structure and anomalous transport properties of topological materials by first principle calculation
386 2022-07-14 15:00  E6 #1501 & Zoom  Pure two-dimensional quantum electron liquid and its phase transition
385 2022-10-24 16:00  E6 #1501(공동강의실)  Physics Colloquim(Fall 2022) file
384 2022-01-25 15:00  E6 #1501/online  Emulating twisted double bilayer graphene with a multiorbital optical lattice file
383 2022-03-31 10:00  E6 #1501/zoom  Weiss fields for Quantum Spin Dynamics file