visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Geometry, Algebra, and Quantum Field Theory

2022.05.17 18:02

admin 조회 수:654

날짜 2022-05-18 16:00 
일시 May. 18(Wed), 4pm 
장소 E6-2. #1323 & Zoom 
연사 Dr.Heeyeon Kim (Rutgers University, Department of Physics and Astronomy) 
김희연 박사의 세미나를 아래와 같이 안내드립니다.
 

Title: Geometry, Algebra, and Quantum Field Theory 

Speaker: Dr.Heeyeon Kim  (Rutgers University, Department of Physics and Astronomy )
Date: May. 18(Wed), 4pm

Place : E6-2. 1st fl. #1323

[Zoom 회의 참가]
 
회의 ID: 870 9940 6103

 

Abstract: 

Quantum Field Theory (QFT) is a powerful description of a wide range of physical phenomena, from the interaction of elementary particles to exotic phases of matter. However, despite its remarkable success, the traditional framework of QFT based on perturbation theory remains incomplete. One of the most important challenges is to build a mathematical foundation of QFT that enables a systematic study of strongly interacting systems.
 
In this talk, I will introduce String Theory as a unique tool that connects various ideas in quantum physics and modern mathematics. Regardless of its phenomenological role, this framework provides novel insights into both disciplines. Dualities in string theory predict extremely non-trivial conjectures identifying two a priori distinct structures in mathematics. Conversely, ideas in modern mathematics have led to new advances in QFT that allows a deeper understanding of its non-perturbative structures.
 
I will discuss recent development in building a unifying tool that plays a central role in establishing this connection. In particular, I will focus on the interplay between supersymmetric QFTs and problems in enumerative geometry, which is a branch in modern mathematics that counts the number of solutions to fundamental geometric questions. The interaction leads to a variety of new applications across physics and mathematics, from black-hole micro-state counting problems to the classification of topological spaces.
번호 날짜 장소 제목
386 2016-04-04 09:30  KAIST Natural Science Building (E6-2), RM #4314  Radio frequency engineering
385 2023-04-05 16:00  E6-2, #2502  [High Energy Theory Seminar]Anomalies of Discrete 1-Form Symmetries in QCD-like Theories
384 2017-04-05 12:00  Room 101, Creative Learning Bldg.(E11)  2017년 4월 첫수 융합포럼 개최 안내(물리학과 & 원자력 및 양자공학과 공동 개최)/The First Wednesday Multidisciplinary Forum in April 2017 organized by Dept. of Physics & Dept. of Nuclear & Quantum Engineering file
383 2018-04-06 10:00  #2502, E6  Entanglement and thermalization in many-body systems: recent progress file
382 2016-04-06 15:30  E6-2, RM #1323  Superconducting Quantum Interference Devices for Precision Detection
381 2017-04-06 16:00  IBS CAPP seminar room, Creation Hall (3F), KAIST Munji Campus  For whom the Belle tolls
380 2023-02-20 16:00  Room 1323, KAIST Natural Sciences Lecture Hall(E6)  Physics of ferromagnet/superconductor junctions
379 2023-08-23 16:00  E6-2, #1322  [High Energy Theory Seminar] A spacetime tensor network for AdS3/CFT2
378 2023-08-24 11:00  E6, Rm#1323  Advancing magnonic metamaterials: spin waves in nanomagnetic arrays
377 2020-08-25 20:00  Zoom webinar  KAIST Global Forum for Spin and Beyond (Second Forum) file
376 2017-08-16 16:00  #1322 (E6-2. 1st fl.)  Phonon-driven spin-Floquet valleytro-magnetism file
375 2020-08-17 20:00  Zoom webinar  Using magnetic tunnel junctions to compute like the brain file
374 2022-08-01 10:00  E6 #1501 & Zoom  [Update 세미나 영상] James Webb Space Telescope & OTE Commissioning
373 2017-08-31 14:00  #5318(E6-2. 5th fl.)  “Berry phase and nonlinear response: photocurrent in noncentrosymmetric insulators and Weyl semimetals” file
372 2016-08-04 14:30  KAIST Natural Science Building (E6-5), EDU 3.0 Room(1st fl.)  Relational Logic (with applications to Quantum Mechanics, String Theory, Cosmology, Neutrino Oscillations, Statistical Mechanics)
371 2022-08-08 14:00  E6-2 #2502  Classical Shadow Tomography for Analog Quantum Simulators
370 2022-08-09 14:00  KI building (E4), Lecture Room Red (B501)  Quantum biology in fluorescent protein: a new model system to study quantum effects in biology file
369 2022-08-12 10:00  E6-1 #1323  Twisted Bilayer Magnets file
368 2022-08-12 10:00  E6-1 #1323  Twisted Bilayer Magnets file
367 2022-08-17 11:00  E6-6 #118호  Robust Hamiltonian Engineering of Large Quantum Systems (큰 양자시스템의 견고한 해밀토니안 엔지니어링)