visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 E6-2, #1323 
일시 2016/1/26, 2PM 
연사 Dr. Sergei V. Kalinin (Center for Nanophase Materials Sciences, Oak Ridge National Laboratory) 

Electrochemistry on Nano- and Atomic Levels: Scanning Probe Microscopy Meets Deep Data

 

Jan. 26 (Tue), 2PM,  E6-2. #1323
Dr. Sergei V. Kalinin,  Center for Nanophase Materials Sciences, Oak Ridge National Laboratory

 

Structural and electronic properties of oxide surfaces control their physical functionalities and electrocatalytic activity, and are currently of interest for energy generation and storage applications. In this presentation, I will discuss several examples of high-resolution studies of the electronic and electrochemical properties of oxide surfaces enabled by multidimensional scanning probe microscopies. On the mesoscopic scale, combination of strain- and current sensitive scanning probe microscopies allows to build nanometer-scale maps of local reversible and irreversible electrochemical activities. The use of multivariate statistical methods allows separating the complex multidimensional data sets into statistically significant components which in certain cases can be mapped onto individual physical mechanisms. I will further discuss the use of in-situ Pulsed Laser Deposition growth combined with atomic resolution Scanning Tunneling Microscopy and Spectroscopy to explore surface structures and electrochemical reactivity of oxides on the atomic scale. For SrRuO3, we directly observe multiple surface reconstructions and link these to the metal-insulator transitions as ascertained by UPS methods. On LaxCa1-xMnO3, we demonstrate strong termination dependence of electronic properties and presence of disordered oxygen ad-atoms. The growth dynamics and surface terminations of these films are discussed, along with single-atom electrochemistry experiments performed by STM. Finally, I explore the opportunities for atomically-resolved imaging and property data mining of functional oxides extending beyond classical order parameter descriptions, and giving rise to the deep data analysis in materials research. 
This research is supported by the by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division, and was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, BES DOE.

 

Contact: Chan-Ho Yang, Physics Dept., (chyang@kaist.ac.kr)

번호 일시 장소 연사 제목
235 Apr. 01 (Fri.) 2:30 PM  E6-2. 1st fl. #1501  Dr. KICHEON KANG, Chonnam National University  Interference of single charged particles without a loop and dynamic nonlocality
234 May 31 (Tue.) 4 PM  #1323(E6-2, 1st fl.)  Dr. Kimin Kim, KAIST  Understanding 3D tokamak physics towards advanced control of toroidal plasma
233 May. 11 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Kun Woo Kim  Disordered Floquet topological insulators file
232 Dec. 9(Fri), 4p.m.  #1323(E6-2. 1st fl.  Dr. Kun Woo Kim, KIAS  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
231 7월 29일(목) 오후 2시 ~ 오후 4시  Online seminar  Dr. Kunio Kaneta(KIAS)  Gravitationally Induced Dark Sector and Inflationary Dynamics file
230 2015/12/11, 1:30PM  E6-2, #1323  Dr. KwangYong Choi  (Chung-Ang University)  Quantum spin liquid in the 1/3 depleted triangular lattice Ba3(Ru1-xIrx)Ti2O9
229 2016/03/11 1:30 PM  E6-2. 1st fl. #1501  Dr. Kwon Park  Topological phases of matter in nonequilibrium: Topology of the Wannier-Stark ladder
228 November 1 (Thu.), 16:00 PM  #1323, E6-2  Dr. KyeoReh Lee  Direct holography from a single snapshot file
227 2015/07/16, 4PM  E6-2, 1318  Dr. Kyunghan Hong(MIT)  Next-generation ultrafast laser technology for nonlinear optics and strong-field physics
226 October 26 (Fri.), 4:00 PM  #1323, E6-2  Dr. Kyusung Hwang  Coexisting triple-point and nodal-line topological magnons and thermal Hall effect in pyrochlore iridates file
225 Mar. 24 (Fri.), 2:30 PM  #1323 (1st fl. E6-2).  Dr. MahnSoo Choi  Topological Dynamics
224 2015/10/15, 10AM  E6-2, 5th fl. #5318  Dr. Mark D. Bird (Florida State University)  Development of Large-Bore, High Field Magnets at the NHMFL
223 May 19, 2016 (Thur.) 3PM  May 19, 2016 (Thur.) 3PM,  Dr. Michael Betz, CERN  The CERN Resonant WISP Search: Development, Results and Lesson-Learned
222 Jul. 08 (Fri.) 11:00 AM  #1323(E6-2. 1st fl.)  Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.)  Isostatic magnetism
221 2015/11/23, 1:30PM  E6-2, #1323  Dr. Michael Park (Stanford University)  What's Beyond the Standard Model? Lessons from Run I and what might come in Run II
220 Feb. 1 (Wed.), 2p.m.  #1323(E6-2. 1st fl.)  Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo  Quantum electron optics using flying electrons
219 Sep. 10 (Tue.), 03:00 PM  E6-2. 1st fl. #1323  Dr. Mikhail Kiselev  Two-Stage Kondo Effect file
218 Nov. 3 (Fri.), 2:30 PM  #1323 (1st fl., E6-2.)  Dr. MinChul Lee(Department of Applied Physics, Kyung Hee Univ.)  Quantum Resistor-Capacitor Circuit with Majorana Edge States file
217 July 30 (Tue), 4:00 PM  #1323, E6-2  Dr. Mingu Kang  Dirac fermions and flat bands in correlated kagome metals file
216 Apr. 28 (Fri.), 04:00 PM  #1323 (E6-2. 1st fl.)  Dr. Minkyung Jung Research Institute, DGIST  Carbon nanotubes coupled to superconducting impedance matching circuits