visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Quantum electron optics using flying electrons

2017.01.26 23:43

Physics 조회 수:2840

날짜 2017-02-01 14:00 
일시 Feb. 1 (Wed.), 2p.m. 
장소 #1323(E6-2. 1st fl.) 
연사 Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo 

Quantum electron optics using flying electrons

 

Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo

Feb. 1 (Wed.), 2p.m.  #1323(E6-2. 1st fl.)

 

Abstract: Quantum electron optics is a field in which one manipulates quantum states of propagating electrons. Combined with technologies for confining and manipulating single electrons, it allows us to investigate the scattering and interference of electrons in a unit of a single electron. The necessary elements of quantum electron optics experiments include single electron beam splitter, phase shifter, Coulomb coupler, single electron source and detector, spin-orbit path and electron-pair splitter.

In this talk, we present development of some of these elements. The beam splitter and phase shifter are implemented in our original two-path interferometer [1-3]. This interferometer has been shown to be the only reliable system for the measurement of the transmission phase shift of electrons [4,5]. To suppress decoherence induced by the electron-electron interaction and enhance the interference visibility, we recently developed a two-path interferometer of depleted channels, where single electrons are injected by means of surface acoustic waves (SAWs). We also confirmed that a single electron in a static quantum dot (single electron source) can be adiabatically transferred into a SAW-driven moving quantum dot [6], a necessary ingredient for achieving the high interference visibility of a single flying electron.

Quantum electron optics also targets the manipulation of spins of flying single electrons. We found that the spin information of one or two electrons can be transferred between distant quantum dots, which work as the single electron source and detector, with the fidelity limited only by the spin flips prior to the spin transfer [7,8]. We also realized an electron-pair splitter that can be used to split spin-entangled electrons in a moving dot into different moving dots. Combined with single spin manipulation using the spin-orbit interaction (spin-orbit path) [9], this splitter should allow for Bell measurement of electron spins.

This work is in collaboration with S. Takada (now at Institut Neel), R. Ito and K. Watanabe at the University of Tokyo, B. Bertrand, S. Hermelin, T. Meunier, and C. Bäuerle at Institut Neel, and A. Ludwig and A. D. Wieck at Ruhr-Universität Bochum.

 

[1] M. Yamamoto et al., Nature Nano. 7, 247 (2012)..

[2] A. Aharony et al., New J. Phys. 16, 083015 (2014).

[3] T. Bautze et al., Phys. Rev. B 89, 125432 (2014).

[4] S. Takada et al., Phys. Rev. Lett. 113, 126601 (2014).

[5] S. Takada et al., Appl. Phys. Lett. 107, 063101 (2015).

[6] B. Bertrand et al., Nanotechnology 27, 204001 (2016).

[7] S. Hermelin et al., Nature 477, 435 (2011).

[8] B. Bertrand et al., Nature Nano. 11, 672 (2016).

[9] H. Sanada et al., Nature Phys. 9, 280 (2013).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)

 

 

Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 장소 제목
446 2022-10-13 16:00  E6-2 #1323  (광학분야 세미나) Ultrafast Optics for Ultra-Precision Metrology and Realization of Flexible/Stretchable Laser-Induced-Graphene Electronics
445 2018-10-12 16:00  E6-2. 1st fl. #1323  Direct observation of a two-dimensional hole gas at oxide interfaces file
444 2018-10-12 14:30  E6-2. 1st fl. #1323  Quantum Advantage in Learning Parity with Noise file
443 2017-10-10 16:00  E6-2 #1323  Discovery of New 2D Materials with Diverse Physical Properties
442 2016-10-07 16:00  E6-2. #1323(1st fl.)  “Tilt engineering of 4d and 5d transition metal oxides?”
441 2016-10-07 13:30  E6-2. #1323(1st fl.)  “Symmetry and topology in transition metal dichalcogenide?”
440 2020-10-09 09:00  https://kaist.zoom.us/j/85161896513?pwd=U3pwWFFZaWVRamxDZUR5REhNeVk0UT09  Quantum Many-Body Simulation file
439 2023-10-04 16:00  E6-2, #2502  [High-Energy Theory Seminar] Moving towards quantum technologies: the case of quantum batteries
438 2020-10-23 14:00  E6-2 #1323  Plasmon spectroscopy of low-dimensional superconductors in fluctuating regime file
437 2018-11-08 16:00  #1323, E6-2  Conformality lost file
436 2019-11-07 16:00  #1323, E6-2  Integrated quantum photonics with solid-state quantum emitters file
435 2019-11-05 16:00  #1323, E6-2  Study on nanomaterials by the development of ultrahigh resolution laser-photoelectron microscopy (PEEM) file
434 2018-11-29 16:00  #1323, E6-2  양자 칸델라 실현을 위한 단일 광자 발생장치 개발 file
433 2019-11-28 16:00  #1323, E6-2  Generation of coherent EUV emissions using ultrashort laser pulses file
432 2018-11-21 15:00  #1323, E6-2  Engineering topological quantum physics at the atomic scale file
431 2019-11-20 16:00  #5302, E6-2  Correlation between superconducting transition temperature and critical current density in irradiated iron-based superconductors file
430 2019-11-14 16:00  #1323, E6-2  Semi-classical model of polariton propagation file
429 2018-11-01 16:00  #1323, E6-2  Direct holography from a single snapshot file
428 2020-11-26 16:00  Online(Zoom)  2020 가을학기 광학분야 특별세미나(Light Engineering Beyond the Diffraction Limit)
427 2022-11-09 16:00  E6-2. 1st fl. #1323  Radio Astronomy, Radio Interferometry, and Multi-wavelength Studies on Relativistic Jets