visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-11-18 10:30 
일시 Nov. 18th (Fri) 10:30 a.m. 
장소 #5318(5th fl.) 
연사 Dr. 최 순 원, Havard University 

Non-equilibrium many-body spin dynamics in diamond

 

Dr. 원, Havard University

Nov. 18th (Fri) 10:30 a.m., #5318(5th fl.)

 

 

Abstract:

In this talk, we will discuss two recent developments in non-equilibrium quantum dynamics of strongly interacting many-body systems: I. critically slow thermalization in a disordered dipolar spin ensemble [1] and II. the observation of discrete time crystalline order [2]. Both of these experiments were enabled by a high density ensemble of nitrogen-vacancy (NV) color centers in diamond [3]. As a mixture of theory and experiments, the talk will be self-contained and pedagogical, reviewing some of basic concepts in many-body localization, Floquet time-crystal, spin properties of NV centers and experimental techniques to manipulate and engineer the dynamics.

Part I:

Statistical mechanics underlies our understanding of macroscopic quantum systems. It is based on the assumption that out-of-equilibrium systems rapidly approach their equilibrium states, forgetting any information about their microscopic initial conditions. This fundamental paradigm is challenged by disordered systems, in which a slowdown or even absence of thermalization is expected. By controlling the spin states of the ~10^6 NV centers, we observe slow, sub-exponential thermalization consistent with power laws that exhibit disorder-dependent exponents; this behavior is modified at late times owing to many-body interactions. These observations are quantitatively explained by a resonance counting theory that incorporates the effects of both disorder and interactions

Part II:

The interplay of periodic driving, disorder, and strong interactions has recently been predicted to result in exotic ``time-crystalline'' phases, which spontaneously break the discrete time-translation symmetry of the underlying drive. We report the experimental observation of such discrete time-crystalline order and the observation of long-lived temporal correlations at integer multiples of the fundamental driving period. We experimentally identify the phase boundary and find that the temporal order is protected by strong interactions; this order is remarkably stable against perturbations, even in the presence of slow thermalization. We provide a theoretical description of approximate Floquet eigenstates of the system based on product state ansatz and predict the phase boundary, which is in qualitative agreement with our observations.

 

[1] G. Kucsko et al, arXiv:1609.08216

[2] S. Choi et al, arXiv:1610.08057

[3] J. Choi et al, arXiv:1608.05471

 

Contact: Eun-Gook Moon, Physics Dept., (egmoon@kaist.ac.kr)

 

번호 날짜 장소 제목
446 2022-03-28 16:00  E6, #1501  Ultimate-density atomic semiconductor via flat bands
445 2022-03-07 16:00  E6, #1501  Climate Physics and Modelling(우리말강의)
444 2022-05-19 15:00  online  (광학분야 특별세미나)Development of a multimodal optical system for improved disease diagnosis
443 2022-05-19 15:00  online  (광학분야 특별세미나)Development of a multimodal optical system for improved disease diagnosis
442 2022-04-11 16:00  E6, #1501  Emergence of Statistical Mechanics in Quantum Systems
441 2022-04-25 16:00  E6, #1501  Ultrafast electron beam, a tool to explore the nanoscopic world of materials(우리말강의)
440 2022-04-04- 16:00  E6, #1501  New paradigms in Quantum Field Theory
439 2022-05-10 16:00  E6 1323  (광학분야 특별세미나)Testing quantum thermodynamics using quantum optics
438 2022-04-14 16:00  E6 1323  (광학분야 특별세미나)Holographic tomography of dielectric tensors at optical frequency
437 2022-05-26 16:00  E6 1323  (광학분야 특별세미나)Topological photonic devices
436 2022-04-28 16:00  E6 1323  (광학분야 특별세미나)Adiabaticity and symmetry in optical waveguide design
435 2022-03-31 16:00  online  (광학분야 특별세미나)Ultrafast time-resolved spectroscopy in topological materials
434 2016-09-21 16:00  E6-2. #2502(2nd fl.)  Entanglement probe of two-impurity Kondo physics
433 2016-04-18 15:30  KI빌딩(E4), 강의실 B501 (5F)  First Principles Approaches for Intermolecular Interactions: From Gas-Phase Dimers to Liquid Water and Molecular Crystal Polymorphism file
432 2022-05-02 16:00  E6, #1501  What can we learn from the history of science and technology?(우리말강의)
431 2022-05-23 16:00  E6, #1501  Novel electronic transport in topological van der Waals magnets
430 2022-05-30 16:00  E6, #1501  Light manipulation using 2D layered semiconductors
429 2022-05-09 16:00  E6, #1501  Searching for new electronic properties in correlated material flatland
428 2022-05-16 16:00  E6, #1501  Design synthetic topological matter with atoms and lights
427 2016-05-17 11:00  창의학습관(E11), 406호  The CERN Resonant WISP Search: Development, Results and Lesson-Learned