visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Large-scale Silicon Photonic MEMS Switches

2016.09.28 19:50

Physics 조회 수:1602

날짜 2016-09-29 16:00 
일시 Sep. 29th(Thu), 4PM 
장소 E6-2 #1323 (1st floor) 
연사 Dr. Sangyoon Han, Department of Physics, KAIST 

Large-scale Silicon Photonic MEMS Switches


Sep. 29th(Thu), 4PM, E6-2 #1323 (1st floor)

Dr. Sangyoon Han, Department of Physics, KAIST

 

Abstract:

Fast optical-circuit-switches (OCS) having a large number of ports can significantly enhance the performance and the efficiency of modern data centers by actively rearranging network patterns. Commercially available optical switches operating with the use of moving mirror arrays have port counts exceeding 100x100 and insertion losses fewer than a few dBs. However, their switching speeds are typically tens-of-milliseconds which limits their applications in highly dynamic traffic patterns.

Recently, optical switches based on silicon photonics technology have been designed and built. Silicon photonic switches with microsecond or nanosecond response times have been demonstrated, and silicon photonic switches with integrated CMOS driving circuits have been demonstrated. However, the demonstrations were mostly limited to a small number of ports due to their cascaded 2x2 architecture which induces high optical losses as port-count increases. Moreover, the demonstrations were limited to single polarization operations, and narrow spectral bandwidths.

In this talk, I will introduce a new architecture for silicon photonic switches that is highly scalable (optical insertion loss < 1 dB regardless of port-count), polarization-insensitive (< 1dB of PDL), and ultra-broadband (~300nm). The new architecture uses a two-level waveguide-crossbar with moving waveguide couplers that configure light paths. Three experimental implementations of the new architecture with 50x50 ports will be shown in the talk.

 


Biography:

Sangyoon Han is a postdoctoral research associate in the Physics department at KAIST. He received his Ph.D. in Electrical Engineering and Computer Sciences from the University of California, Berkeley in 2016. He received his B.S. in Electrical Engineering from Seoul National University. He was a recipient of Korea Foundation for Advanced Studies Scholarship for study abroad, and he was a recipient of a graduate bronze medal from Collegiate Inventors Competition (USPTO sponsored) in 2015.

번호 날짜 장소 제목
449 2019-01-09 16:00  E6-2. 2nd fl. #2501  Molecular Mott state in the deficient spinel GaV4S8 file
448 2016-11-16 16:00  #1323(E6-2. 1st fl.)  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
447 2016-05-13 16:00  E6. #1501(1st fl.)  Graphene analogue in (111)- BaBiO3 bilayer heterostructures for topological electronics
446 2021-12-03 16:00  Zoom webinar  Nonequilibrium Heat Transport in Elemental Metals Probed by an Ultrathin Magnetic Thermometer file
445 2018-07-27 15:00  Room 5318, KAIST Natural Sciences Lecture Hall(E6).  Muon g-2 in the 2HDM and MSSM: comprehensive numerical analysis and absolute maxima file
444 2018-07-27 15:00  Room 5318, KAIST Natural Sciences Lecture Hall(E6).  Muon g-2 in the 2HDM and MSSM: comprehensive numerical analysis and absolute maxima file
443 2023-11-16 16:00  E6-2(Natural Science B/D). 1st fl. #1323  Electric-field control of emergent phenomena in correlated oxide thin films
442 2022-07-14 14:15  E6 #1501 & Zoom  Hund and electronic correlations in ruthenium-based systems
441 2022-01-26 13:00  E6 #1501  An Introduction to Cohomology groups file
440 2018-10-12 16:00  E6-2. 1st fl. #1323  Direct observation of a two-dimensional hole gas at oxide interfaces file
439 2022-11-18 14:30  E6-2. 1st fl. #1323 & Zoom  Kondo cloud condensation in a highly-doped semiconductor metal file
438 2018-12-26 16:00  E6-2. 1st fl. #1323  Brane-like defect in 3D toric code file
437 2019-07-31 16:00  E6-2, #1323  Features of ballistic superconducting graphene file
436 2018-07-12 17:00  Room 5318, KAIST Natural Sciences Lecture Hall(E6)  The MilliQan Experiment: Search for Milli-Charged Particles at the LHC
435 2016-12-09 13:30  #1323(E6-2. 1st fl.)  Entanglement area law in strongly-correlated systems
434 2023-11-23 16:00  E6-2(Natural Science B/D). 1st fl. #1323  Deciphering the Enigma of Quantum Materials by X-ray Scattering and Spectroscopy
433 2019-10-16 16:00  #1323 (E6-2, 1st fl.)  Emergent black holes and monopoles from quantum fields file
432 2022-07-14 13:30  E6 #1501 & Zoom  Electronic structure and anomalous transport properties of topological materials by first principle calculation
431 2016-11-24 16:00  #1323(E6-2. 1st fl.)  Harmonic oscillator physics with single atoms in a state-selective optical potential
430 2015-09-07 15:00  E6-2. 1st fl. #1318  Advanced Optical Materials and Devices at NRL