visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-06-16 16:00 
일시 Jun. 16 (Thu) 4PM 
장소 #1323(E6-2, 1st fl.) 
연사 Hyochul Kim, Samsung Advanced Institute of Technology 

“Quantum information processing using quantum dots and photonic crystal cavities”

 

Jun. 16 (Thu) 4PM, #1323(E6-2, 1st fl.)
Hyochul Kim, Samsung Advanced Institute of Technology

 

The ability to interface light with solid-state quantum bits (qubits) is essential for future development of scalable and compact quantum information systems that operate on ultra-fast timescales. Photons act as ideal carriers of quantum information and can serve as an efficient quantum link between matter qubits. Quantum dots (QDs) provide a promising implementation of a matter qubit, which can store quantum information in both excitonic states and highly stable spin states, providing an atom-like system in a semiconductor platform. By coupling these QDs to optical nano-cavities it becomes possible to achieve the strong coupling regime where a QD can modify the cavity spectral response, providing an efficient light-matter interface.
In this talk, I will explain that the qubit state of a photon can be controlled by a single solid-state qubit composed of a QD strongly coupled to a photonic crystal cavity.  The QD acts as a coherently controllable qubit system that conditionally flips the polarization of a photon reflected from the cavity on picosecond timescales, which implements a controlled NOT logic gate between the QD and the incident photon. Furthermore, the spin of a single electron or hole trapped in a charged QD can be used as a solid-state qubit with long coherence time. I will discuss our recent experimental realization of a quantum phase switch using a solid-state spin confined in a QD strongly coupled to a photonic crystal cavity, where the switch applies a spin-dependent phase shift on a photon.


Contact: Yoonsoo Kim (T.2599)

번호 날짜 장소 제목
249 2022-05-18 16:00  E6-2. #1323 & Zoom  Geometry, Algebra, and Quantum Field Theory
248 2022-09-15 13:00  E6-2, #1323  AdS black holes: a review
247 2016-11-18 10:30  #5318(5th fl.)  Non-equilibrium many-body spin dynamics in diamond
246 2016-10-27 16:00  #1323(E6-2)  Terahertz Metal Optics
245 2019-06-28 13:30  #1323, E6-2  Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures file
244 2016-04-08 13:30  E6-2. 1st fl. #1501  Theoretical Overview of Iron-based superconductors and its future
243 2017-09-26 11:00  #1323 (E6-2. 1st fl.)  Time-resolved ARPES study of Dirac and topological materials
242 2019-11-01 14:30  E6-2. 1st fl. #1323  Squeezing the best out of 2D materials file
241 2019-04-19 14:30  E6-2. 1st fl. #1323  A family of finite-temperature electronic phase transitions in graphene multilayers file
240 2015-11-06 16:30  E6-2, #5318  Topological Dirac line nodes in centrosymmetric semimetals
239 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
238 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
237 2022-08-09 14:00  KI building (E4), Lecture Room Red (B501)  Quantum biology in fluorescent protein: a new model system to study quantum effects in biology file
236 2016-05-13 13:30  E6. #1501(1st fl.)  Aperiodic crystals in low dimensions
235 2018-04-11 16:00  #1323 (E6-2, 1st fl.)  Non-Gaussian states of multimode light generated via hybrid quantum information processing file
234 2017-05-12 13:30  E6-2. 1st fl. #1323  Topological Dirac insulator
233 2022-05-13 16:00  자연과학동(E6-2) 1st fl. #1323  High-fidelity iToffoli gate for fixed-frequency superconducting qubits file
232 2022-06-10 11:00  Online seminar  Record-quality two-dimensional electron systems file
231 2018-04-11 13:30  #1323 (E6-2, 1st fl.)  Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level file
230 2018-10-15 16:00  #1323, E6-2  Universal properties of macroscopic current-carrying systems file