visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 E6-2. 1st fl. #1323 
일시 Apr. 28 (Fri.), 02:30 PM 
연사 Dr. JeongYoung Park Graduate School of EEWS, KAIST 

 

Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion

 

Dr. JeongYoung Park

Graduate School of EEWS, KAIST

Apr. 28 (Fri.), 02:30 PM

E6-2. 1st fl. #1323

 

 

Abstract: 

A pulse of high kinetic energy electrons (1–3 eV) in metals can be generated after surface exposure to external energy, such as the absorption of light or exothermic chemical processes. These energetic electrons are not at thermal equilibrium with the metal atoms and are called ‘‘hot electrons’’. The detection of hot electrons and understanding the correlation between hot electron generation and surface phenomena are challenging questions in the surface science and catalysis community. Hot electron flow generated on a gold thin film by photon absorption (or internal photoemission) appears to be correlated with localized surface plasmon resonance. 

In this talk, I will show strategy to quantify the non-adiabatic energy transfer and detect hot electron flux during the elementary steps of the energy conversion process and catalytic reaction processes occurring at both of solid-gas and solid-liquid interfaces. To detect and utilize the hot electron flows, the nanodiodes consisting of metal catalyst film, semiconductor layers, and Ohmic contact pads were constructed It was shown that the chemicurrent or hot electron flows were well correlated with the turnover rate of CO oxidation or hydrogen oxidation separately measured by gas chromatography, suggesting the intrinsic relation between catalytic reaction and hot electron generation. We show a novel scheme of graphene catalytic nanodiode composed of a Pt NPs array on graphene/TiO2 Schottky nanodiode, which allows detection of hot electron flows induced by hydrogen oxidation on Pt NPs. By analyzing the correlation between the turnover rate (catalytic activity) and hot electron current (chemicurrent) measured on the graphene catalytic nanodiodes, we demonstrate that the catalytic nanodiodes utilizing a single graphene layer for electrical connection of Pt NPs are beneficial for the detection of hot electrons due to not only atomically thin nature of graphene but also reducing the height of the potential barrier existing at the Pt NPs/graphene interface. I will show that hot electron flow generated on a gold thin film by photon absorption (or internal photoemission) is amplified by localized surface plasmon resonance. Finally, The effect of surface plasmons on the catalytic and photocatalytic activity on metal–oxide hybrid nanocatalysts is also highlighted. These phenomena imply the efficient energy conversion from the photon energy to the chemical energy, with the potential application of hot electron-based photocatalytic devices.

 

 

 

번호 일시 장소 연사 제목
공지 2019/09/18 - 12/5  Seminar Room #1323  Prof. David Schuster and etc.  Fall 2019: Physics Seminar Serises
공지 2019/09/02 - 12/09  Seminar Room 1501  이호성 박사 (한국표준과학연구원) and etc.  Fall 2019: Physics Colloquium
212 May. 12 (Fri.), 01:30 PM  E6-2. 1st fl. #1323  Dr. Young Kuk Kim  Topological Dirac insulator
211 Jun. 2 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Euyheon Hwang(황의헌)  Quasiparticle Interference and Fourier transform scanning tunneling spectroscopy in WTe2 (Weyl semimetal) file
210 Sep. 22 (Fri.), 01:00 PM  E6-2. 1st fl. #1323  Dr. EunSeong Kim / Department of Physics, KAIST  Superconductor-metal-insulator transition in thin Tantalum films file
209 Sep. 22 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. GilHo Lee / Department of Physics, POSTECH  Quantum Electronic Transport in Graphene Hybrid Nanostructures file
208 Sep. 22 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. GilHo Lee / Department of Physics, POSTECH  Unexpected Electron-Pairing in Integer Quantum Hall Effect file
207 Mar. 16 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. JinHee Kim  산화물 다층박막에서의 다양한 물리현상 file
206 Mar. 16 (Fri.), 04:0 PM  E6-2. 1st fl. #1323  Dr. YoungDuck Kim  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
205 Apr. 09 (Mon.), 11:00 AM  E6-2. 1st fl. #1323  Dr. Seung-Sup B. Lee  Doublon-holon origin of the subpeaks at the Hubbard band edges file
204 May. 11 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Kun Woo Kim  Disordered Floquet topological insulators file
203 May. 11 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Nam Kim  암페어 단위 재정의와 단전자 펌프 소자 개발 file
202 May. 17 (Thu.), 01:30 PM  E6-2. 1st fl. #1323  Prof. Yong-Baek Kim University of Toronto  Quantum Spin Liquid in Kitaev Materials file
201 Jun. 01 (Fri.), 11:00 AM  E6-2. 1st fl. #1323  Dr. Seung Sae Hong  Topological phases in low-dimensional quantum materials file
200 Nov. 9 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Pilkyung Moon  Moiré superlattices – from twisted bilayer graphene to quasicrystal file
199 Nov. 9 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Donghun Lee  Quantum sensing and imaging with diamond defect centers for nano-scale spin physics file
198 Dec. 7 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Gyung Min Choi  Spin generation from heat and light in metals file
197 Dec. 7 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Joon Ho Jang  Novel probes of interacting electrons in 2D systems file
196 DEC. 11 (Tue), 04:00 PM  E6-2. 1st fl. #1323  Prof. Hiroshi Shinaoka  Natural compact representation of Matsubara Green’s functions: applications to analytic continuation and quantum many-body simulations file
195 DEC. 16~18 (Sun~Tue)  E6-2. 1st fl. #1323  Prof. Keisuke Totsuka  Lectures on 2d Conformal Field Theory file
194 Dec. 26 (Wed.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Isaac H. Kim  Brane-like defect in 3D toric code file
193 DEC. 27 (Thu), 04:00 PM  E6-2. 1st fl. #1323  Prof. Na Young Kim  Quantum Innovation (QuIN) Laboratory file