visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-09-14 14:00 
일시 2015/09/14, 2PM 
장소 E6-2. 2nd fl. #2501 
연사 Dr. Hae Ja Lee ( Stanford University, SLAC ) 

Ultrafast X-ray Studies on Dynamics Matter in Extreme Conditions

 

2015/09/14(Mon) 2PM, E6-2. 2nd fl. #2501
Dr. Hae Ja Lee,  Stanford University, SLAC


Investigation of matter properties in extreme thermodynamic conditions has attracted numerous experimental and theoretical work motivated by its implication in shock wave physics, high pressure physic, geoscience, dense plasmas, warm dense matter, x-ray and laser created plasmas, and astrophysically relevant plasmas. Static compression studies using diamond anvil cells and synchrotron light source have revealed structural phase transitions of crystalline material under high pressure. Recent shock compression studies at high power optical laser facilities have accomplished measurements of material properties in extreme conditions beyond pressures generated by diamond anvil cells. In particular, dynamic compression experiments have contributed to produce and probe a broad range of extreme conditions on very short time scales. However, the understanding the atomic-level dynamic response of material under such conditions are not well understood yet. 
The LCLS free electron laser providing femtosecond pulses of keV x-rays with sufficient brilliance (~1012 photons /pulse) is well suited to examine dynamic responses in materials subject to a broad range of peak stresses (~ 5 GPa to above 100 GPa) and time durations (10s fs up to several hundred ns). Development of advanced diagnostic technique using LCLS beam permits experiments in the regimes of interest at the time and spatial scales of the simulations. This talk will present state-of-the-art experimental platform at MEC endstation and address phase transitions and dynamic responses of several materials including Bi, Si, SiO2 during shock loading. I will also look into the potential to advance our knowledge of the dynamic behavior.

 

Contact: EunJung Jo, Physics Dept., (jojo@kaist.ac.kr)

번호 날짜 장소 제목
466 2019-10-15 16:00  #1323, E6-2  Moiré superlattices and graphene quasicrystal file
465 2018-10-15 16:00  #1323, E6-2  Universal properties of macroscopic current-carrying systems file
464 2023-10-11 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP seminar] Particle Physics with Neutrinos file
463 2023-10-11 16:00  E6-2, Rm2502  [High Energy Theory Seminar] Axion Magnetic Resonance
462 2018-10-11 16:00  #1323, E6-2  Dirac electrons in a graphene quasicrystal file
461 2023-10-19 11:00  E6-2 #1322  Emergent functionalities of iridium oxide films with different growth orientation file
460 2022-10-07 11:00  E6-2 #1323  [Update 세미나 영상] (응집물리 세미나) Competing orders in a vanadium-based kagome metal monolayer file
459 2022-10-06 13:00  E6 #1323  Counting States with Global Symmetry
458 2022-10-04 16:00  E6 #2501  Distinguishing 6d (1, 0) SCFTs
457 2022-10-28 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Machine-Learning-Guided Prediction models and Materials discovery for high Tc cuprates file
456 2016-10-27 16:00  #1323(E6-2)  Terahertz Metal Optics
455 2022-10-27 16:00  E6-2 #1323  (광학분야 세미나) Cavity optomechanical systems for quantum transduction
454 2022-10-26 10:00  E6-2 #2502  Replica Higher-Order Topology of Hofstadter Butterflies in Twisted Bilayer Graphene
453 2019-10-25 15:00  #1323, E6-2  Physics Seminar file
452 2016-10-18 15:00  E6-2. 1st fl. #1323  “Hybrid quantum systems with mechanical oscillators”
451 2016-10-18 13:30  1st fl. #1323(E6-2)  "Visualization of oxygen vacancy in motion and the interplay with electronic conduction"
450 2016-10-17 11:00  #1323,(E6-2, 1st fl.)  IMS and examples of the studies on optoelectronic materials
449 2020-10-16 16:00  https://kaist.zoom.us/j/89198078609  Hidden room-temperature ferroelectricity in CaTiO3 revealed by a metastable octahedral rotation pattern file
448 2020-10-16 14:30  https://kaist.zoom.us/j/89198078609  Nanoscale magnetic resonance detection towards nano MRI file
447 2020-10-15 16:00  (https://kaist.zoom.us/j/93997220310)  Towards resource-efficient and fault-tolerant quantum computation with nonclassical light