visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-09-14 14:00 
일시 2015/09/14, 2PM 
장소 E6-2. 2nd fl. #2501 
연사 Dr. Hae Ja Lee ( Stanford University, SLAC ) 

Ultrafast X-ray Studies on Dynamics Matter in Extreme Conditions

 

2015/09/14(Mon) 2PM, E6-2. 2nd fl. #2501
Dr. Hae Ja Lee,  Stanford University, SLAC


Investigation of matter properties in extreme thermodynamic conditions has attracted numerous experimental and theoretical work motivated by its implication in shock wave physics, high pressure physic, geoscience, dense plasmas, warm dense matter, x-ray and laser created plasmas, and astrophysically relevant plasmas. Static compression studies using diamond anvil cells and synchrotron light source have revealed structural phase transitions of crystalline material under high pressure. Recent shock compression studies at high power optical laser facilities have accomplished measurements of material properties in extreme conditions beyond pressures generated by diamond anvil cells. In particular, dynamic compression experiments have contributed to produce and probe a broad range of extreme conditions on very short time scales. However, the understanding the atomic-level dynamic response of material under such conditions are not well understood yet. 
The LCLS free electron laser providing femtosecond pulses of keV x-rays with sufficient brilliance (~1012 photons /pulse) is well suited to examine dynamic responses in materials subject to a broad range of peak stresses (~ 5 GPa to above 100 GPa) and time durations (10s fs up to several hundred ns). Development of advanced diagnostic technique using LCLS beam permits experiments in the regimes of interest at the time and spatial scales of the simulations. This talk will present state-of-the-art experimental platform at MEC endstation and address phase transitions and dynamic responses of several materials including Bi, Si, SiO2 during shock loading. I will also look into the potential to advance our knowledge of the dynamic behavior.

 

Contact: EunJung Jo, Physics Dept., (jojo@kaist.ac.kr)

번호 날짜 장소 제목
469 2011-09-03 16:00  E6, 1501  Physics Colloquium : 2011 Fall file
468 2022-10-13 16:00  E6-2 #1323  (광학분야 세미나) Ultrafast Optics for Ultra-Precision Metrology and Realization of Flexible/Stretchable Laser-Induced-Graphene Electronics
467 2020-11-12 16:00  E6-2 1323  2020 가을학기 광학분야 특별세미나
466 2022-10-07 11:00  E6-2 #1323  [Update 세미나 영상] (응집물리 세미나) Competing orders in a vanadium-based kagome metal monolayer file
465 2022-10-28 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Machine-Learning-Guided Prediction models and Materials discovery for high Tc cuprates file
464 2017-10-10 16:00  E6-2 #1323  Discovery of New 2D Materials with Diverse Physical Properties
463 2023-04-06 16:00  E6-2 #1323  (광학분야 세미나)Nanophotonics-based approaches to explore Berry physics
462 2022-11-17 16:00  E6-2 #1323  (광학분야 세미나) Ultrastructural and Spectroscopic Studies by Super-Resolution Fluorescence Microscopy
461 2022-09-22 16:00  E6-2 #1323  (광학분야 세미나) Quasi-particle-like optical vortices in magnetic materials
460 2022-02-28 16:00  E6, #1501  Spin-based training of optical microscopes
459 2022-12-09 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) Single-shot measurements of strongly-correlated artificial molecular levels in semiconductor quantum dots file
458 2023-03-24 11:00  E6-2 #1323  (응집물리 세미나)Floquet simulators of topological surface states in isolation
457 2023-05-18 16:00  E6-2 #1323  (광학분야 세미나)Dielectric metasurfaces for optimized optical system and spatial light modulators
456 2022-05-10 16:00  E6 1323  (광학분야 특별세미나)Testing quantum thermodynamics using quantum optics
455 2022-05-30 16:00  E6, #1501  Light manipulation using 2D layered semiconductors
454 2022-09-29 16:00  E6-2 #1323  (광학분야 세미나) Ultrafast THz Field-Induced Nonlinear Optics
453 2013-03-11 16:00  E6, 1501  Physics Colloquium : 2013 Spring
452 2023-05-31 16:00  E6-2, #2502  [High-Energy Theory Seminar] Resurgence and complex Chern-Simons theory
451 2022-01-18 14:00  KI bldg. 5th fl. Room B501 & Zoom  Data-driven interrogation of biological dynamics: from subcellular interactions to neuronal networks in vivo file
450 2016-06-14 16:00  Seminar Room (#2502, 2nd fl.)  Photonic quantum network based on multimode squeezed vacuums and single-photon subtraction