visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-07-16 16:00 
일시 2015/07/16, 4PM 
장소 E6-2, 1318 
연사 Dr. Kyunghan Hong(MIT) 

Next-generation ultrafast laser technology for nonlinear optics and strong-field physics

2015/7/16 (Thurs) 4PM, Rm 1318 (Faculty Conference Rm.)

Dr. Kyunghan Hong, MIT

 

Femtosecond high-power Ti:sapphire chirped-pulse amplification (CPA) laser technology at 800 nm of wavelength has been widely and almost exclusively used over last two decades for studying ultrafast nonlinear optics and strong-field phenomena. Recently ultrafast optical parametric chirped-pulse amplification (OPCPA) technology has made a rapid progress, so that various wavelengths are available at high intensities. The wavelength selectivity provides interesting opportunities in ultrafast nonlinear optics and strong-field phenomena driven especially at mid-infrared (MIR) wavelengths. High-harmonic generation (HHG) driven by MIR wavelengths has been proven to be a reliable way to achieve a tabletop coherent water-window soft X-ray (280-540 eV) or keV source. On the other hand, the super-continuum generation (SCG) in the MIR range is highly useful for detecting biomedical materials and air pollutants with the resonant fingerprints of the common molecules, such as H2O, CO2, CO, and NH4. The highly nonlinear laser filamentation process enables the SCG in bulk dielectrics and gases. 


In this presentation, I review our recent progress on a multi-mJ MIR (2.1 m) OPCPA system operating at a kHz repetition rate, pumped by a picosecond cryogenically cooled Yb:YAG laser. Using this novel MIR source, we demonstrate high-flux soft X-ray HHG up to the water-window range. In addition, I present the MIR filamentation in dielectrics showing 3-octave-spanning SCG and sub-2-cycle self-compression. I will also discuss novel high-energy pulse synthesizer technology based on multi-color OPCPA systems. The work presented here provides an excellent platform of next-generation strong-field laser technology.

 

Contact: HeeKyunh Ahn, Laser Science Research Lab. Tel. 2561

번호 날짜 장소 제목
482 2018-06-22 16:00  #1323, E6-2  Tuning functional properties of BiFeO3 films using strain and growth chemistry file
481 2018-06-22 16:00  #1323, E6-2  Tuning functional properties of BiFeO3 films using strain and growth chemistry file
480 2019-11-28 16:00  #1323, E6-2  Generation of coherent EUV emissions using ultrashort laser pulses file
479 2019-11-14 16:00  #1323, E6-2  Semi-classical model of polariton propagation file
478 2019-10-17 16:00  #1323, E6-2  Top down manipulation of Waves : From Metamaterials, Correlated Disorder, Quantum Analogy, to Digital Processing file
477 2018-05-29 16:00  #1323, E6-2  Investigation on metal nanostructure/semiconductor junction and its applications file
476 2018-10-18 16:00  #1323, E6-2  Applications of nonlinear optics for condensed matter researches file
475 2019-09-26 16:00  #1323, E6-2  Entanglement Swapping with Autonomous Polarization-Entangled Photon-Pairs from Warm Atomic Ensemble file
474 2018-11-29 16:00  #1323, E6-2  양자 칸델라 실현을 위한 단일 광자 발생장치 개발 file
473 2018-07-27 13:30  #1323, E6-2  Magnetic reversal of artificial spin ice file
472 2018-07-27 13:30  #1323, E6-2  Magnetic reversal of artificial spin ice file
471 2018-10-25 16:00  #1323, E6-2  Abelian and non-Abelian dark photons file
470 2019-11-07 16:00  #1323, E6-2  Integrated quantum photonics with solid-state quantum emitters file
469 2018-10-26 16:00  #1323, E6-2  Coexisting triple-point and nodal-line topological magnons and thermal Hall effect in pyrochlore iridates file
468 2018-11-08 16:00  #1323, E6-2  Conformality lost file
467 2019-10-29 14:30  #1323, E6-2  Quantum sensing file
466 2018-09-05 16:00  #1323, E6-2  Shining a light on fractional excitations file
465 2020-02-20 16:00  #1323, E6-2  Unconventional superconductivity in the locally non-centrosymmetric heavy-fermion CeRh2As2 file
464 2019-12-03 16:00  #1323, E6-2  Toward Quantum Materials with Correlated Oxides file
463 2018-10-18 10:00  #1323, E6-2  Understanding membrane protein folding using single-molecule force techniques file