visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-12-09 11:00 
일시 Dec. 9 (Fri), 11:00AM 
장소 E6-2 #1323 
연사 김도헌(서울대 물리천문학부 교수) 
세미나 영상은 아래 링크로 확인 바랍니다. (공개기간: 2022.12.15-2023.03.14, 3개월)
 
 
1. Date / Time 
    - Dec  9, 2022
    - 11:00 AM (KST)
 
2. Place: E6-2 #1323
 
3. Speaker
    - 김도헌 (서울대 물리천문학부 교수)
 
4. Talk Title
    - Two-electron quantum dot spin qubits in isotopically purified silicon
 
5. Abstract
Engineered spin-electric coupling is essential to enable fast manipulation of spins in semiconductor quantum dot (QD) nanostructures, especially in silicon. Although the placement of on-chip micromagnets has enabled single-spin qubits in silicon with gate fidelity to reach surface code-based error correction threshold, corresponding results using encoded spin qubits, for example, single-triplet qubits with high-quality quantum oscillations, have not been demonstrated. Instead, the spin-valley coupling has been recently used to enhance the electrical controllability of two-electron spin qubits in silicon at the expense of increased susceptibility to charge noise. Here, we demonstrate fast singlet-triplet qubit oscillation (~ 100MHz) of a quantum dot spin qubit in isotopically purified 28Si/SiGe substrate with an on-chip micromagnet in the regime where valley-splitting in each quantum dot exceeds 300 ueV. Combining rf-reflectometry-based single-shot readout and real time Hamiltonian estimation, we show that the oscillation quality factor of an encoded spin qubit over 1000 can be achieved. We further present the measurement of single-triplet qubit oscillation and variation of coherence time near the micro-magnet’s magnetization reversal, offering a route to in-situ tune magnetic field gradient and hence the Larmor frequency of the singlet-triplet qubit in silicon.
 
Attached: C.V
 
Inquiry: Prof. Se Kwon Kim(sekwonkim@kaist.ac.kr) / Prof. Hee Jun Yang (h.yang@kaist.ac.kr)
 
번호 날짜 장소 제목
502 2016-07-08 11:00  #1323(E6-2. 1st fl.)  Isostatic magnetism
501 2016-11-11 13:30  #1323(E6-2. 1st fl.)  Bandgap Engineering of Black Phosphorus
500 2016-07-07 14:00  #1323(E6-2. 1st fl.)  Let there be topological superconductors
499 2017-02-01 14:00  #1323(E6-2. 1st fl.)  Quantum electron optics using flying electrons
498 2016-11-16 16:00  #1323(E6-2. 1st fl.)  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
497 2018-10-19 10:00  #1323, E6-2  Energy conversion processes during magnetic reconnection in a laboratory plasma file
496 2018-05-31 16:00  #1323, E6-2  Dynamic control of optical properties with gated-graphene metamaterials file
495 2018-10-04 16:00  #1323, E6-2  Engineering light absorption in an ultrathin semiconductor metafilm file
494 2019-12-05 16:00  #1323, E6-2  Subwavelenth Photonic Devices: From Single Photon Sources to Solar Cell file
493 2019-10-15 16:00  #1323, E6-2  Moiré superlattices and graphene quasicrystal file
492 2018-10-16 10:00  #1323, E6-2  Capturing protein cluster dynamics and gene expression output in live cells file
491 2019-11-05 16:00  #1323, E6-2  Study on nanomaterials by the development of ultrahigh resolution laser-photoelectron microscopy (PEEM) file
490 2018-11-01 16:00  #1323, E6-2  Direct holography from a single snapshot file
489 2019-12-18 16:00  #1323, E6-2  Road to Higher Tc Superconductivity file
488 2018-05-09 16:00  #1323, E6-2  Recent advances in thermoelectric bulk composites file
487 2018-11-21 15:00  #1323, E6-2  Engineering topological quantum physics at the atomic scale file
486 2018-10-11 16:00  #1323, E6-2  Dirac electrons in a graphene quasicrystal file
485 2019-10-25 15:00  #1323, E6-2  Physics Seminar file
484 2019-09-18 16:00  #1323, E6-2  Exploring Synthetic Quantum Matter in Superconducting Circuits file
483 2018-10-15 16:00  #1323, E6-2  Universal properties of macroscopic current-carrying systems file