visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-06-14 10:00 
일시 June 14 (THU), 10:00 AM 
장소 E6-2, 2nd fl. #2502 
연사 Prof. Kenji Toyoda 

Physics Seminar

 

 

Phonons and polariton-like particles in trapped ions for quantum computation and quantum simulation”

 

Prof. Kenji Toyoda

Osaka University

 

June 14 (THU), 10:00 AM

E6-2, 2nd fl. #2502

 

Phonons are ubiquitous quantum-mechanical excitations representing the quantized energies of vibrational modes.  They are becoming more and more actively controled and used in such areas as phonon engineering and optomechanical systems. In the study of trapped ions for quantum information processing, as well, phonons has taken essential roles. They have been traditionally used to mediate information between internal-state qubits to realize quantum gates. On the other hand, they have certain useful properties, in their own right, for use as independent degrees of freedom. Phonons obey the Bose-Einstein statistics, and by adjusting trap parameters they can take global as well as local characteristics. These properties can be utilized for such areas as quantum computation and quantum simulation.

  In this talk, I would like to present three topics related to phonons and characteristic motions in trapped ions. The first one is experiments on two-phonon interference (the Hong-Ou-Mandel effect) and prospects toward realization of phonon-based quantum computing using the interference of multiple phonons. The second topic is the quantum simulation of interacting particles in solid-state materials based on phonon-based quasiparticles. When ions are illuminated with optical pulses resonant to vibrational sidebands, quasiparticles called phonon-polaritons are formed, which can be used for quantum simulation that catches the basic characteristics of interacting electrons in solids. The last topic is the study of a ''quantum rotor'' made from a three-ion crystal in a triangular shape. The superpositions of optically distiguishable two orientations of the crystal are realized by cooling its rotational mode to the ground state. Furthermore, their dependence to an applied static magnetic field, due to the Aharonov-Bohm effect, is observed.

 

Contact: EunJung Jo, Physics Dept., (jojo@kaist.ac.kr)

 

Department of Physics, KAIST

번호 날짜 장소 제목
504 2016-07-08 11:00  #1323(E6-2. 1st fl.)  Isostatic magnetism
503 2016-11-11 13:30  #1323(E6-2. 1st fl.)  Bandgap Engineering of Black Phosphorus
502 2016-07-07 14:00  #1323(E6-2. 1st fl.)  Let there be topological superconductors
501 2017-02-01 14:00  #1323(E6-2. 1st fl.)  Quantum electron optics using flying electrons
500 2016-11-16 16:00  #1323(E6-2. 1st fl.)  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
499 2018-10-19 10:00  #1323, E6-2  Energy conversion processes during magnetic reconnection in a laboratory plasma file
498 2018-05-31 16:00  #1323, E6-2  Dynamic control of optical properties with gated-graphene metamaterials file
497 2018-10-04 16:00  #1323, E6-2  Engineering light absorption in an ultrathin semiconductor metafilm file
496 2019-12-05 16:00  #1323, E6-2  Subwavelenth Photonic Devices: From Single Photon Sources to Solar Cell file
495 2019-10-15 16:00  #1323, E6-2  Moiré superlattices and graphene quasicrystal file
494 2018-10-16 10:00  #1323, E6-2  Capturing protein cluster dynamics and gene expression output in live cells file
493 2019-11-05 16:00  #1323, E6-2  Study on nanomaterials by the development of ultrahigh resolution laser-photoelectron microscopy (PEEM) file
492 2018-11-01 16:00  #1323, E6-2  Direct holography from a single snapshot file
491 2019-12-18 16:00  #1323, E6-2  Road to Higher Tc Superconductivity file
490 2018-05-09 16:00  #1323, E6-2  Recent advances in thermoelectric bulk composites file
489 2018-11-21 15:00  #1323, E6-2  Engineering topological quantum physics at the atomic scale file
488 2018-10-11 16:00  #1323, E6-2  Dirac electrons in a graphene quasicrystal file
487 2019-10-25 15:00  #1323, E6-2  Physics Seminar file
486 2019-09-18 16:00  #1323, E6-2  Exploring Synthetic Quantum Matter in Superconducting Circuits file
485 2018-10-15 16:00  #1323, E6-2  Universal properties of macroscopic current-carrying systems file