visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Large-scale Silicon Photonic MEMS Switches

2016.09.28 19:50

Physics 조회 수:1597

날짜 2016-09-29 16:00 
일시 Sep. 29th(Thu), 4PM 
장소 E6-2 #1323 (1st floor) 
연사 Dr. Sangyoon Han, Department of Physics, KAIST 

Large-scale Silicon Photonic MEMS Switches


Sep. 29th(Thu), 4PM, E6-2 #1323 (1st floor)

Dr. Sangyoon Han, Department of Physics, KAIST

 

Abstract:

Fast optical-circuit-switches (OCS) having a large number of ports can significantly enhance the performance and the efficiency of modern data centers by actively rearranging network patterns. Commercially available optical switches operating with the use of moving mirror arrays have port counts exceeding 100x100 and insertion losses fewer than a few dBs. However, their switching speeds are typically tens-of-milliseconds which limits their applications in highly dynamic traffic patterns.

Recently, optical switches based on silicon photonics technology have been designed and built. Silicon photonic switches with microsecond or nanosecond response times have been demonstrated, and silicon photonic switches with integrated CMOS driving circuits have been demonstrated. However, the demonstrations were mostly limited to a small number of ports due to their cascaded 2x2 architecture which induces high optical losses as port-count increases. Moreover, the demonstrations were limited to single polarization operations, and narrow spectral bandwidths.

In this talk, I will introduce a new architecture for silicon photonic switches that is highly scalable (optical insertion loss < 1 dB regardless of port-count), polarization-insensitive (< 1dB of PDL), and ultra-broadband (~300nm). The new architecture uses a two-level waveguide-crossbar with moving waveguide couplers that configure light paths. Three experimental implementations of the new architecture with 50x50 ports will be shown in the talk.

 


Biography:

Sangyoon Han is a postdoctoral research associate in the Physics department at KAIST. He received his Ph.D. in Electrical Engineering and Computer Sciences from the University of California, Berkeley in 2016. He received his B.S. in Electrical Engineering from Seoul National University. He was a recipient of Korea Foundation for Advanced Studies Scholarship for study abroad, and he was a recipient of a graduate bronze medal from Collegiate Inventors Competition (USPTO sponsored) in 2015.

번호 날짜 장소 제목
124 2019-07-10 16:00  Academic Cltural Complex (E9) 5층 스카이라운지  Public Lectures file
123 2016-10-18 13:30  1st fl. #1323(E6-2)  "Visualization of oxygen vacancy in motion and the interplay with electronic conduction"
122 2016-12-12 13:30  1:30p.m. #1323(E6-2. 1st fl.)  “Possible symmetry in the phase diagrams of electron- & hole-doped cuprate high-Tc superconductors”
121 2015-03-04 12:00  1323호, E6-2  Bioimaging and Biosensing Using Near-Infrared Fluorescence file
120 2020-10-15 16:00  (https://kaist.zoom.us/j/93997220310)  Towards resource-efficient and fault-tolerant quantum computation with nonclassical light
119 2018-02-12 15:00  #C303, (Creation Hall 3F, KAIST Munji Campus)  The recent result of XMASS Experiment
118 2019-12-27 15:00  #5318, E6-2  The superconducting order parameter puzzle of Sr2RuO4 file
117 2019-05-21 16:00  #5318, E6-2  Classification of flat bands according to the band-crossing singularity of Bloch wave functions file
116 2017-08-31 14:00  #5318(E6-2. 5th fl.)  “Berry phase and nonlinear response: photocurrent in noncentrosymmetric insulators and Weyl semimetals” file
115 2016-11-18 10:30  #5318(5th fl.)  Non-equilibrium many-body spin dynamics in diamond
114 2017-11-08 13:00  #5318 (E6-2. 5th fl.)  “Emergent exotic quasiparticles in quantum spin liquids” file
113 2019-02-21 16:00  #5313, E6-2  B-meson charged current anomalies - Theoretical status file
112 2019-11-20 16:00  #5302, E6-2  Correlation between superconducting transition temperature and critical current density in irradiated iron-based superconductors file
111 2019-06-27 14:00  #2502, E6-2  Gapless Kitaev Spin Liquid to Loop and String Gases file
110 2019-09-10 15:00  #2502, E6-2  (2+1) D Duality Web from 3D Euclidean Lattice file
109 2018-04-06 10:00  #2502, E6  Entanglement and thermalization in many-body systems: recent progress file
108 2019-12-13 13:00  #2501, E6-2  Computational Material Designs: Current Status and Future Directions file
107 2016-04-28 15:00  #2501(E6-2. 2nd fl.)  Lattice/Spin/Charge Coupling in 5d Pyrochlore Cd2Os2O7
106 2019-09-02 16:00  Seminar Room 1501  Fall 2019: Physics Colloquium file
105 2016-10-17 11:00  #1323,(E6-2, 1st fl.)  IMS and examples of the studies on optoelectronic materials