visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-11-18 10:30 
일시 Nov. 18th (Fri) 10:30 a.m. 
장소 #5318(5th fl.) 
연사 Dr. 최 순 원, Havard University 

Non-equilibrium many-body spin dynamics in diamond

 

Dr. 원, Havard University

Nov. 18th (Fri) 10:30 a.m., #5318(5th fl.)

 

 

Abstract:

In this talk, we will discuss two recent developments in non-equilibrium quantum dynamics of strongly interacting many-body systems: I. critically slow thermalization in a disordered dipolar spin ensemble [1] and II. the observation of discrete time crystalline order [2]. Both of these experiments were enabled by a high density ensemble of nitrogen-vacancy (NV) color centers in diamond [3]. As a mixture of theory and experiments, the talk will be self-contained and pedagogical, reviewing some of basic concepts in many-body localization, Floquet time-crystal, spin properties of NV centers and experimental techniques to manipulate and engineer the dynamics.

Part I:

Statistical mechanics underlies our understanding of macroscopic quantum systems. It is based on the assumption that out-of-equilibrium systems rapidly approach their equilibrium states, forgetting any information about their microscopic initial conditions. This fundamental paradigm is challenged by disordered systems, in which a slowdown or even absence of thermalization is expected. By controlling the spin states of the ~10^6 NV centers, we observe slow, sub-exponential thermalization consistent with power laws that exhibit disorder-dependent exponents; this behavior is modified at late times owing to many-body interactions. These observations are quantitatively explained by a resonance counting theory that incorporates the effects of both disorder and interactions

Part II:

The interplay of periodic driving, disorder, and strong interactions has recently been predicted to result in exotic ``time-crystalline'' phases, which spontaneously break the discrete time-translation symmetry of the underlying drive. We report the experimental observation of such discrete time-crystalline order and the observation of long-lived temporal correlations at integer multiples of the fundamental driving period. We experimentally identify the phase boundary and find that the temporal order is protected by strong interactions; this order is remarkably stable against perturbations, even in the presence of slow thermalization. We provide a theoretical description of approximate Floquet eigenstates of the system based on product state ansatz and predict the phase boundary, which is in qualitative agreement with our observations.

 

[1] G. Kucsko et al, arXiv:1609.08216

[2] S. Choi et al, arXiv:1610.08057

[3] J. Choi et al, arXiv:1608.05471

 

Contact: Eun-Gook Moon, Physics Dept., (egmoon@kaist.ac.kr)

 

번호 날짜 장소 제목
182 2022-05-09 16:00  E6, #1501  Searching for new electronic properties in correlated material flatland
181 2022-04-04- 16:00  E6, #1501  New paradigms in Quantum Field Theory
180 2022-05-16 16:00  E6, #1501  Design synthetic topological matter with atoms and lights
179 2022-05-30 16:00  E6, #1501  Light manipulation using 2D layered semiconductors
178 2015-10-23 10:30  E6, #1501  How to write a good scientific paper[Open lecture series]
177 2024-02-16 10:00  E6, #1323  Optical conductivity of superconducting states driven by Van Hove singularities
176 2023-07-10 16:00  E6, #1323  Electronic structures of magnetic and non-magnetic ordering in d- and f-electrons systems
175 2019-07-08 14:00  E6, #1322  Ultrabroadband squeezed pulses and their relation to relativity file
174 2022-05-25 14:00  E6 Room(#2501)  Atomic-level insights into ferroelectric switching and preferred orientation of ultrathin hafnia file
173 2018-11-22 15:00  E6 Room(#1323)  Experimental and Computational Study on Physical Properties based on Granular System file
172 2019-08-06 16:00  E6 Room(#1323)  Visualization of in-plane piezoresponse vector fields file
171 2019-08-16 14:00  E6 Room(#1323)  Multiferroic and Magnetoelectric Effects by Tailoring Interfacial Chemistry and Physics in Correlated Oxides file
170 2019-05-08 16:00  E6 Room(#1323)  Imaging valley dependent electron transport in 2D semiconductors file
169 2019-08-01 14:00  E6 Room(#1323)  Low-density Superconductivity in SrTiO3 Probed by Planar Tunneling Spectroscopy file
168 2023-02-28 11:00  E6 Room(#1322)  Topotactic redox engineering toward novel material file
167 2022-06-23 11:00  E6 Room(#1322)  JILA’s search for the electron’s Electric Dipole Moment (eEDM) to probe physics beyond the standard model file
166 2022-05-10 16:00  E6 1323  (광학분야 특별세미나)Testing quantum thermodynamics using quantum optics
165 2022-04-28 16:00  E6 1323  (광학분야 특별세미나)Adiabaticity and symmetry in optical waveguide design
164 2022-05-26 16:00  E6 1323  (광학분야 특별세미나)Topological photonic devices
163 2022-04-14 16:00  E6 1323  (광학분야 특별세미나)Holographic tomography of dielectric tensors at optical frequency