visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-04-11 13:30 
일시 April 11 (Wed), 1:30pm 
장소 #1323 (E6-2, 1st fl.) 
연사 Dr. Yongsoo Yang 

Physics Seminar

 

Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level

 

Dr. Yongsoo Yang

Dept. of Physics and Astronomy, UCLA

 

April 11 (Wed), 1:30pm

#1323 (E6-2, 1st fl.)

 

 

Abstract:

Modern science and technology rely on functional materials, and the physical properties of these materials often strongly depend on defects, local disorder, nanoscale heterogeneities, and grain structures at the atomic scale. Traditional crystallography, which is reliant on periodicity, has been the main method for determining crystal structures, but cannot determine defects or other non-crystalline features. My work goes beyond crystallography. Without any prior assumption of underlying structure, atomic electron tomography (AET) is now able to locate the 3D coordinates of individual atoms with picometer precision and with elemental specificity [1-3]. I will show a variety of complex atomic structures with 3D atomic-level details; including grain boundaries, chemical order/disorder, phase boundaries, and anti-site point defects. I will further demonstrate that these experimentally determined atomic structures can be combined with quantum mechanical calculations to provide an atomic-level understanding of physical properties such as 3D strain tensors, magnetic moments and local magnetocrystalline anisotropy. Understanding the relationship between atomic structure and physical properties will open up new avenues in condensed matter physics and allow the rational design of novel materials at the atomic scale [1-2].

[1] Yang et al., Nature 542, 75-79 (2017).

[2] Xu et al., Nature Mater. 14, 1099-1103 (2015).

[3] Pryor*, Yang* et al., Sci. Rep. 7:10409 (2017).

 

Contact: Yongseop Kang, Administration Team (T.2599)

 

Department of Physics

번호 날짜 장소 제목
206 2018-02-12 15:00  #C303, (Creation Hall 3F, KAIST Munji Campus)  The recent result of XMASS Experiment
205 2017-02-01 14:00  #1323(E6-2. 1st fl.)  Quantum electron optics using flying electrons
204 2019-12-05 16:00  #1323, E6-2  Subwavelenth Photonic Devices: From Single Photon Sources to Solar Cell file
203 2019-12-03 16:00  #1323, E6-2  Toward Quantum Materials with Correlated Oxides file
202 2019-12-27 15:00  E6-2,#5318  The superconducting order parameter puzzle of Sr2RuO4 file
201 2020-12-02 10:00  Zoom  Recent progress in Axion Dark Matter eXperiment (ADMX) technology file
200 2019-12-18 16:00  #1323, E6-2  Road to Higher Tc Superconductivity file
199 2019-12-13 13:30  #1323, E6-2  Biophysics Mini-symposium at KAIST file
198 2019-12-13 13:00  #2501, E6-2  Computational Material Designs: Current Status and Future Directions file
197 2023-12-14 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  Superconducting qubits for large-scale quantum computers file
196 2020-12-09 10:00  Zoom  Searching for the QCD axion with the ARIADNE experiment file
195 2020-12-23 10:00  Online  Online workshop for Quantitative Phase Imaging file
194 2020-12-10 13:55  Zoom  Consistency of Boltzmann equation and light dark matter from inflaton decay
193 2016-12-09 16:00  #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
192 2016-12-09 13:30  #1323(E6-2. 1st fl.)  Entanglement area law in strongly-correlated systems
191 2022-12-09 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) Single-shot measurements of strongly-correlated artificial molecular levels in semiconductor quantum dots file
190 2016-12-8 16:00  #1323(E6-2. 1st fl.)  Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator
189 2022-12-07 16:00  E6-2 #1323  (광학분야 세미나) Non-Hermitian physics and non-Hermitian singularity
188 2018-12-07 16:00  E6-2. 1st fl. #1323  Novel probes of interacting electrons in 2D systems file
187 2018-12-07 14:30  E6-2. 1st fl. #1323  Spin generation from heat and light in metals file