visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-07-16 16:00 
일시 2015/07/16, 4PM 
장소 E6-2, 1318 
연사 Dr. Kyunghan Hong(MIT) 

Next-generation ultrafast laser technology for nonlinear optics and strong-field physics

2015/7/16 (Thurs) 4PM, Rm 1318 (Faculty Conference Rm.)

Dr. Kyunghan Hong, MIT

 

Femtosecond high-power Ti:sapphire chirped-pulse amplification (CPA) laser technology at 800 nm of wavelength has been widely and almost exclusively used over last two decades for studying ultrafast nonlinear optics and strong-field phenomena. Recently ultrafast optical parametric chirped-pulse amplification (OPCPA) technology has made a rapid progress, so that various wavelengths are available at high intensities. The wavelength selectivity provides interesting opportunities in ultrafast nonlinear optics and strong-field phenomena driven especially at mid-infrared (MIR) wavelengths. High-harmonic generation (HHG) driven by MIR wavelengths has been proven to be a reliable way to achieve a tabletop coherent water-window soft X-ray (280-540 eV) or keV source. On the other hand, the super-continuum generation (SCG) in the MIR range is highly useful for detecting biomedical materials and air pollutants with the resonant fingerprints of the common molecules, such as H2O, CO2, CO, and NH4. The highly nonlinear laser filamentation process enables the SCG in bulk dielectrics and gases. 


In this presentation, I review our recent progress on a multi-mJ MIR (2.1 m) OPCPA system operating at a kHz repetition rate, pumped by a picosecond cryogenically cooled Yb:YAG laser. Using this novel MIR source, we demonstrate high-flux soft X-ray HHG up to the water-window range. In addition, I present the MIR filamentation in dielectrics showing 3-octave-spanning SCG and sub-2-cycle self-compression. I will also discuss novel high-energy pulse synthesizer technology based on multi-color OPCPA systems. The work presented here provides an excellent platform of next-generation strong-field laser technology.

 

Contact: HeeKyunh Ahn, Laser Science Research Lab. Tel. 2561

번호 날짜 장소 제목
231 2019-05-30 16:00  #1323, E6-2  Tuning the excitonic properties of semiconductors with light-matter interactions file
230 2019-05-24 16:00  #1323, E6-2  Infrared spectroscopy study on metal-insulator transitions in layered perovskite iridates file
229 2019-05-21 16:00  #5318, E6-2  Classification of flat bands according to the band-crossing singularity of Bloch wave functions file
228 2019-05-09 16:00  #1323, E6-2  Quantum Optical Sensing Using Single Photons And Single Photon Emission from Single Emitters file
227 2019-05-08 16:00  E6 Room(#1323)  Imaging valley dependent electron transport in 2D semiconductors file
226 2019-05-03 11:00  E6-2. 2st fl. #2502  Exotic Magnetism file
225 2019-05-02 16:00  #1323, E6-2  Anomalous optical properties of halide perovskites file
224 2019-05-01 16:00  #1323, E6-2  Raman and x-ray scattering study on correlated electron systems: two case examples file
223 2019-04-26 16:00  #1323, E6-2  Robust Quantum Metrology using Strongly Interacting Spin Ensembles and Quantum Convolutional Neural Network file
222 2019-04-23 16:00  #1323, E6-2  From Mott physics to high-temperature superconductivity file
221 2019-04-19 16:00  E6-2. 1st fl. #1323  Graphene and hBN heterostructures file
220 2019-04-19 14:30  E6-2. 1st fl. #1323  A family of finite-temperature electronic phase transitions in graphene multilayers file
219 2019-04-19 11:00  #1323, E6-2  First-principles studies of semiconductors for solar cell applications file
218 2019-04-11 16:00  #1323, E6-2  Massive screening for cathode active materials using deep neural network file
217 2019-04-04 16:00  #1323, E6-2  Chiral spin-photon interaction at nanoscale file
216 2019-03-29 16:00  E6-2. 1st fl. #1323  Coherent Quantum Control and Magnetism on atoms – Trapped ion and ESR STM file
215 2019-03-29 14:30  E6-2. 1st fl. #1323  Epitaxial Multifunctional Oxide Thin Films for Novel Electronics file
214 2019-03-26 15:00  E6-2. 2st fl. #2501  Consideration of thermal Hall effect in frustrated and un-frustrated quantum magnets file
213 2019-03-21 16:00  RM. 1323, E6-2  Spring 2019: Physics Seminar Serises file
212 2019-02-25 16:00  Rm. 1501 (E6)  Spring 2019: Physics Colloquium file