visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 May 19, 2016 (Thur.) 3PM, 
일시 May 19, 2016 (Thur.) 3PM 
연사 Dr. Michael Betz, CERN 

 

The CERN Resonant WISP Search: Development, Results and Lesson-Learned

   

May 19, 2016 (Thur.) 3PM, #5318(E6-2, 5th fl.)

Dr. Michael Betz, CERN

   

Weakly Interacting Sub-eV Particles (WISPs) could reveal the composition of cold dark matter in the universe and explain a large number of astrophysical phenomena. Despite their strong theoretical motivation, these hypothetical particles could not be observed in any experiment so far.

The "CERN Resonant WISP Search"(CROWS) probes the existence of WISPs using microwave techniques.

The heart of the table-top experiment are two high-Q microwave cavity resonators. The `emitting cavity` is driven by a power amplifier at 3 GHz, resulting in the build-up of a strong electromagnetic field inside. The `receiving cavity` is placed in close vicinity and connected to a sensitive microwave receiver.

Most theories predict a weak coupling between the two cavities due to a Photon to WISP conversion process. CROWS tries to observe that coupling, while mitigating electromagnetic crosstalk with a high-end (~ 300 dB) electromagnetic shielding enclosure for the receiving part of the experiment.

Although no WISPs were detected in the most sensitive measurement-runs in 2013, a previously unexplored region in the parameter space was opened up. For `Hidden Sector Photons`, a prominent member of the WISP family, the result corresponds to an improvement in sensitivity over the previous laboratory exclusion limit by a factor of ~7.

This talk shall give a brief introduction to WISPs, the experimental search efforts worldwide and then focus on the design and development of the CROWS experiment, which happened in the framework of the authors PhD.

The encountered engineering challenges and their solutions will be highlighted. This includes the high performance EMI shielding ( 300 dB through several layers), operating electronics in strong (3 T) magnetic fields, optical signal transmission and high sensitivity (P < 1E-24 W) microwave signal detection. The operation procedure and the lessons learned during various experimental runs are shown. Furthermore, several ideas are proposed, on how to improve the experiment and its sensitivity further.

 

Contact: T.8166(CAPP Administration Office)

번호 일시 장소 연사 제목
공지 2019/09/18 - 12/5  Seminar Room #1323  Prof. David Schuster and etc.  Fall 2019: Physics Seminar Serises
공지 2019/09/02 - 12/09  Seminar Room 1501  이호성 박사 (한국표준과학연구원) and etc.  Fall 2019: Physics Colloquium
48 November 7 (Thu.), 16:00 PM  #1323, E6-2  Prof. Je-Hyung Kim  Integrated quantum photonics with solid-state quantum emitters file
47 January 17 (Fri), 4:00 PM  #1323, E6-2  Hiroki Ikegami  Symmetry Breaking and Topology in Superfluid 3He file
46 February 20 (Thu), 4:00 PM  #1323, E6-2  Seunghyun Khim  Unconventional superconductivity in the locally non-centrosymmetric heavy-fermion CeRh2As2 file
45 Mar. 2nd (Thu), 4:00 p.m  #1323(E6-2. 1st fl.)  Dr. Jonathan Denlinger, Lawrence Berkeley National Lab  “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”
44 Apr. 19(Tue.), 2PM  #1323(E6-2. 1st fl.)  Prof. Mark Koepke, Department of Physics and Astronomy, West Virginia University, USA  Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability
43 Jul. 08 (Fri.) 11:00 AM  #1323(E6-2. 1st fl.)  Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.)  Isostatic magnetism
42 Jul. 07 (Thu.) 2PM  #1323(E6-2. 1st fl.)  Dr. Eun Ah Kim, CORNELL UNIV.  Let there be topological superconductors
41 Jul. 08 (Fri.) 2PM  #1323(E6-2. 1st fl.)  Dr. Junhyun Lee, Harvard University  Electronic quasiparticles in the quantum dimer model
40 Jul. 28 (Thu.) 4PM  #1323(E6-2. 1st fl.)  Prof. Johannes Pollanen, Jerry Cowen Chair of Experimental Physics at Michigan State University  Low Dimensional Electrons: On the Road to Hybrid Quantum Systems
39 Nov. 11th(Fri), 1:30 p.m.  #1323(E6-2. 1st fl.)  Dr. Keun Su Kim, POSTECH  Bandgap Engineering of Black Phosphorus
38 Nov. 11th (Fri), 4 p.m.  #1323(E6-2. 1st fl.)  Dr. Bohm-Jung Yang, SNU  Dirac fermions in condensed matters
37 Nov. 16 (Wed), 4p.m.  #1323(E6-2. 1st fl.)  Dr. Heung-Sik Kim , University of Toronto  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
36 Nov. 24(Thu) 4p.m.  #1323(E6-2. 1st fl.)  Dr. Jai-Min Choi, Chonbuk National Univiersity  Harmonic oscillator physics with single atoms in a state-selective optical potential
35 Nov. 29(Tue) 4p.m.  #1323(E6-2. 1st fl.)  Dr. SungBin Lee, KAIST  Symmetry Protected Kondo Metals and Their Phase Transitions
34 Dec. 8(Thu) 4p.m.  #1323(E6-2. 1st fl.)  Dr. Jinhyoung Lee, Hanyang University  Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator
33 Dec. 9(Fri), 1:30 p.m.  #1323(E6-2. 1st fl.)  Dr. Jae Yoon Cho, POSTECH  Entanglement area law in strongly-correlated systems
32 Feb. 1 (Wed.), 2p.m.  #1323(E6-2. 1st fl.)  Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo  Quantum electron optics using flying electrons
31 Dec. 9(Fri), 4p.m.  #1323(E6-2. 1st fl.  Dr. Kun Woo Kim, KIAS  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
30 May 16, 2016 (Mon) 4PM  #1323(E6-2, 1st Fl.)  Dr. Daniel Bowring , Fermi National Accelerator Laboratory  Tuning microwave cavities with biased nonlinear dielectrics for axion searches
29 May 19 (Thu) 4PM  #1323(E6-2, 1st fl.)  Dr. Heedeuk Shin, POSTECH  Nonlinear/quantum optical effect in silicon nano-photonics