visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-04-13 10:00 
일시 April 13 (Fri.), 10am 
장소 #1323 (E6-2, 1st fl.) 
연사 Dr. Sungkun Hong 

Physics Seminar

 

Quantum meets Mechanics: from Quantum Information to Fundamental Research

 

Dr. Sungkun Hong

Vienna Center for Quantum Science and Technology, University of Vienna

 

April 13 (Fri.), 10am

#1323 (E6-2, 1st fl.)

 

 

Abstract:

Studying quantum aspects of macroscopic moving bodies is a new emerging field in quantum physics. The main experimental approach is cavity optomechanics, where photons in the cavity are used to measure and manipulate motional states of mechanical oscillators. Cavity optomechanics, together with advancements in microfabrication of mechanical devices, has allowed us to observe and control mechanical resonators at the quantum level. This opens new exciting possibilities for quantum information science and for studying quantum physics in hitherto untested macroscopic scales.

In this talk, I will describe two different quantum optomechanics experiments that I have been doing in Vienna. First, I will present our progress in utilizing on-chip optomechanical devices as a new resource for quantum information. Using micro-fabricated silicon structures, we demonstrated the generation of quantum-correlated photon-phonon pairs, the generation and retrieval of single phonons, and the remote entanglement between two mechanical modes, paving the way for telecom-compatible optical quantum networks. Future directions of the work will also be discussed. Next, I will introduce a novel, hybrid optomechanical system consisting of optically levitated nanoparticles and micro-fabricated photonic crystal cavity. The system combines ultra-high mechanical quality of the levitated nanoparticle and strong optical transduction from the optical cavity. It thus will allow for quantum coherent experiments on particle’s motions even at room temperature. I will discuss the current status of the experiment as well as future plans of the work, particularly the matter-wave interferometry in an unexplored mass regime.

 

Contact: Yongseop Kang, Administration Team (T.2599)

 

Department of Physics

번호 날짜 장소 제목
공지 2023-02-27 12:00  E6-1 #1501  2023 봄학기 콜로키움 전체 일정
공지 2023-03-16 16:00  E6-2 #1323  2023 봄학기 광학분야 및 응집물리 특별세미나 전체 일정
229 2022-11-03 13:00  E6-2 #1323  [High-Energy Theory Seminar] Supersymmetric observables via Fermi-gas method
228 2022-11-24 16:00  E6-2 #1323 & Zoom  Probing fundamental physics by mapping the mm and sub-mm sky
227 2016-09-29 16:00  E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches
226 2022-08-08 14:00  E6-2 #2502  Classical Shadow Tomography for Analog Quantum Simulators
225 2022-10-26 10:00  E6-2 #2502  Replica Higher-Order Topology of Hofstadter Butterflies in Twisted Bilayer Graphene
224 2020-11-12 16:00  E6-2 1323  2020 가을학기 광학분야 특별세미나
223 2022-01-17 14:00  E6-2 Room 2502  Five Lectures on Observational Probes of Dark Energy file
222 2016-09-02 16:00  E6-2(1st fl) #1323  Quantum Electrical Transport in Topological Insulator Nanowires
221 2016-09-02 14:30  E6-2(1st fl.), #1323  Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
220 2019-06-28 14:00  E6-2, #1322  1st Research-exchange meeting of computational material physics file
219 2023-03-02 11:00  E6-2, #1322  Probing Anomalies of Non-Invertible Symmetries with Symmetry TFTs
218 2015-11-10 16:00  E6-2, #1323  Rapid heating of matter using high power lasers
217 2015-11-19 16:00  E6-2, #1323  Emergent Collective Phenomena and Functions at Reduced Dimensions
216 2015-12-09 14:00  E6-2, #1323  SWELLABLE COLLOIDAL PARTICLES ARE SWELL
215 2015-12-02 16:00  E6-2, #1323  Samarium Hexaboride: Is it a Topological insulator?
214 2015-12-03 16:00  E6-2, #1323  Hybrid solid state spin qubits in wide bandgap semiconductors
213 2015-11-24 16:00  E6-2, #1323  Topology-based understanding of spin dynamics in inhomogeneously magnetized systems
212 2015-11-23 13:30  E6-2, #1323  What's Beyond the Standard Model? Lessons from Run I and what might come in Run II
211 2015-11-28 10:00  E6-2, #1323  Electron Tunneling Spectroscopy of Single and Bilayer Graphene with Hexagonal Boron Nitride as Tunneling Barrier
210 2015-12-01 16:00  E6-2, #1323  Introducing extra dimensions to spectroscopic studies of advanced quantum materials