visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-04-05 16:00 
일시 Apr. 5 (Tue.), 4PM 
장소 E6-2. 1st fl. #1322 
연사 Dr. Ara Go, Columbia University 

"A new impurity solver for multi-orbital systems: adaptive truncation of the Hilbert space"

 

Apr. 5 (Tue.), 4PM, E6-2. 1st fl. #1322
Dr. Ara Go, Columbia University

 

The exact diagonalization (ED) has many attractive advantages as an impurity solver for the dynamical mean-field theory (DMFT). It solves the impurity Hamiltonians with any types of interaction in contrast to the quantum Monte Carlo, which suffers from the severe sign problem in low symmetry situation. However, the ED approximates the continuous bath to a finite quantum mechanical problem to reduce the system size, so that the total number of orbitals is less than 14. This is insufficient, to treat most multi-orbital systems via the DMFT. To overcome this limit, we first adapt the configuration interaction (CI) as an impurity solver. We show the computed optical conductivity through this method is in excellent agreement with the experiment at gap edge. We have further developed adaptive truncations of the Hilbert space, which can handle much larger impurity Hamiltonians without loosing the advantages of the ED. We benchmark the one-dimensional Hubbard model and show that this impurity solver can obtain sufficiently accurate Green functions of impurity Hamiltonian with 24 electronic orbitals. The solvable system size in this method is larger than twice of the ED limit, and this capability enlarges the DMFT applications to many unexplored problems. I also discuss the possible applications, focussing on the multi-orbital systems with low symmetry.

 

Contact: MyungJoon Han, Physics Dept., (mj.han@kaist.ac.kr)

번호 날짜 장소 제목
309 2018-10-16 10:00  #1323, E6-2  Capturing protein cluster dynamics and gene expression output in live cells file
308 2023-02-28 11:00  E6 Room(#1322)  Topotactic redox engineering toward novel material file
307 2022-11-10 16:00  E6-2. 1st fl. #1323  Probing the Origin of Cosmic Infrared Background and Future Prospects with SPHEREx
306 2015-11-10 16:00  E6-2, #1323  Rapid heating of matter using high power lasers
305 2015-12-01 16:00  E6-2, #1323  Introducing extra dimensions to spectroscopic studies of advanced quantum materials
304 2023-04-13 11:00  Zoom  [High Energy Theory Seminar]Noninvertible Gauss Law and Axions
303 2023-12-14 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  Superconducting qubits for large-scale quantum computers file
302 2016-09-02 14:30  E6-2(1st fl.), #1323  Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
301 2016-09-02 16:00  E6-2(1st fl) #1323  Quantum Electrical Transport in Topological Insulator Nanowires
300 2018-10-15 16:00  #1323, E6-2  Universal properties of macroscopic current-carrying systems file
299 2018-04-11 13:30  #1323 (E6-2, 1st fl.)  Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level file
298 2022-06-10 11:00  Online seminar  Record-quality two-dimensional electron systems file
297 2022-05-13 16:00  자연과학동(E6-2) 1st fl. #1323  High-fidelity iToffoli gate for fixed-frequency superconducting qubits file
296 2017-05-12 13:30  E6-2. 1st fl. #1323  Topological Dirac insulator
295 2018-04-11 16:00  #1323 (E6-2, 1st fl.)  Non-Gaussian states of multimode light generated via hybrid quantum information processing file
294 2016-05-13 13:30  E6. #1501(1st fl.)  Aperiodic crystals in low dimensions
293 2022-08-09 14:00  KI building (E4), Lecture Room Red (B501)  Quantum biology in fluorescent protein: a new model system to study quantum effects in biology file
292 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
291 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
290 2015-11-06 16:30  E6-2, #5318  Topological Dirac line nodes in centrosymmetric semimetals