No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets
2016.06.13 17:16
장소 | #1323 (E6-2 1st fl.) |
---|---|
일시 | June 14, 2016 (Tue) 3PM |
연사 | Prof. Seungyong Hahn, Florida State University |
No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets
June 14, 2016 (Tue) 3PM , #1323 (E6-2 1st fl.)
Prof. Seungyong Hahn, Florida State University
Abstract:
Firstly introduced in 2010, the No-Insulation (NI) high temperature superconductor (HTS) winding technique is expected to provide a practical solution for protection of HTS magnets, one of the most critical challenges in high-field (>20-T) HTS magnets. The key idea is to eliminate turn-to-turn insulation within an HTS coil and, in a quench event, current can be automatically diverted to the adjacent turns through turn-to-turn shorts. As a result, an NI magnet can be designed at a substantially higher operating current density than that of its insulated counterpart, thus the magnet becomes extremely compact, yet “self-protecting.” To date, over 100 NI HTS coils have been constructed and tested to have successfully demonstrated the self-protecting feature of NI coils. In a magnet level, a total of 9 NI magnets have been designed, constructed, and tested, including the recent 26-T 35-mm all-REBCO magnet that was designed by Hahn and constructed by SuNAM. To date, all of NI magnets survived after multiple consecutive quenches at their nominal operating temperature ranged 4.2 – 20 K. An NI magnet, however, has a major drawback of “charging delay” due to its turn-to-turn shorts. Several variations of the NI technique, including the Partial-No-Insulation (PNI) and the Metallic-Cladding-Insulation (MCI), are proposed by several groups, with which 5 – 50 times reduced charging delays were reported than those of their NI counterparts. This presentation provides a summary of the NI magnet technologies, relevant to design and construction of axion detection magnets, for the past 5 years, which include: 1) recent quench test results of two all-REBCO magnets, 26-T/35-mm and 7-T/78-mm; 2) a 9 T REBCO insert that reached a record high field of 40 T in a background field of 31 T; 3) “electromagnetic quench propagation” as the self-protecting mechanism of an NI magnet; 4) potential of the NI technique for the next-generation ultra high field magnets; 5) major challenges and potential pitfalls.
Contact: CAPP Administration Office(T.8166)
댓글 0
번호 | 일시 | 장소 | 연사 | 제목 |
---|---|---|---|---|
공지 | 2019/09/18 - 12/5 | Seminar Room #1323 | Prof. David Schuster and etc. | Fall 2019: Physics Seminar Serises |
공지 | 2019/09/02 - 12/09 | Seminar Room 1501 | 이호성 박사 (한국표준과학연구원) and etc. | Fall 2019: Physics Colloquium |
104 | Apr. 28 (Thu.) 3PM | #2501(E6-2. 2nd fl.) | Dr. Chang Hee Sohn, SEOUL NATIONAL UNIVERSITY | Lattice/Spin/Charge Coupling in 5d Pyrochlore Cd2Os2O7 |
103 | Oct. 17th (Mon) 11:00 AM | #1323,(E6-2, 1st fl.) | Nguyen Quang Liem, Institute of Materials Science, VAST, Viettnam | IMS and examples of the studies on optoelectronic materials |
102 | October 4 (Thu.), 16:00 PM | #1323, E6-2 | Prof. Soo Jin Kim |
Engineering light absorption in an ultrathin semiconductor metafilm
![]() |
101 | May 30 (Thu.), 16:00 PM | #1323, E6-2 | Prof. Chang-Hee Cho |
Tuning the excitonic properties of semiconductors with light-matter interactions
![]() |
100 | April 11 (Thu.), 16:00 PM | #1323, E6-2 | Prof. Joo-Hyoung Lee, GIST |
Massive screening for cathode active materials using deep neural network
![]() |
99 | October 11 (Thu.), 16:00 PM | #1323, E6-2 | Prof. Joung-Real Ahn |
Dirac electrons in a graphene quasicrystal
![]() |
98 | May 24 (Fri.), 16:00 PM | #1323, E6-2 | Prof. Soonjae Moon |
Infrared spectroscopy study on metal-insulator transitions in layered perovskite iridates
![]() |
97 | May 31 (Fri.), 11:00 AM | #1323, E6-2 | Prof. Guido Burkard |
Cavity QED with Spin Qubits
![]() |
96 | October 19 (Fri.), 10:00 AM | #1323, E6-2 | Dr. Jongsoo Yoo |
Energy conversion processes during magnetic reconnection in a laboratory plasma
![]() |
95 | October 15 (Mon.), 16:00 PM | #1323, E6-2 | Dr. Yongjoo Baek |
Universal properties of macroscopic current-carrying systems
![]() |
94 | October 25 (Thu.), 4:00 PM | #1323, E6-2 | Dr. Gang Li |
Abelian and non-Abelian dark photons
![]() |
93 | May 9 (Wed.), 04:00 PM | #1323, E6-2 | Prof. Jong-Soo Rhyee |
Recent advances in thermoelectric bulk composites
![]() |
92 | June 4 (Tue.), 5:00 PM | #1323, E6-2 | Prof. Minsu Kim |
Stochastic nature of bacterial eradication using antibiotics
![]() |
91 | October 15 (Tue.), 16:00 PM | #1323, E6-2 | Prof. Pilkyung Moon |
Moiré superlattices and graphene quasicrystal
![]() |
90 | May. 8th (Wed), 16:00 | E6 Room(#1323) | Jieun Lee |
Imaging valley dependent electron transport in 2D semiconductors
![]() |
89 | May 9 (Thu.), 16:00 PM | #1323, E6-2 | Prof. Kwang Geol Lee |
Quantum Optical Sensing Using Single Photons And Single Photon Emission from Single Emitters
![]() |
88 | May 9 (Thu.), 16:00 PM | #1323, E6-2 | Prof. Kwang Geol Lee |
Quantum Optical Sensing Using Single Photons And Single Photon Emission from Single Emitters
![]() |
87 | May 311 (Thu.), 04:00 PM | #1323, E6-2 | Prof. Teun-Teun Kim |
Dynamic control of optical properties with gated-graphene metamaterials
![]() |
86 | November 1 (Thu.), 16:00 PM | #1323, E6-2 | Dr. KyeoReh Lee |
Direct holography from a single snapshot
![]() |