Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion
2017.04.26 13:51
장소 | E6-2. 1st fl. #1323 |
---|---|
일시 | Apr. 28 (Fri.), 02:30 PM |
연사 | Dr. JeongYoung Park Graduate School of EEWS, KAIST |
“Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion”
Dr. JeongYoung Park
Graduate School of EEWS, KAIST
Apr. 28 (Fri.), 02:30 PM
E6-2. 1st fl. #1323
Abstract:
A pulse of high kinetic energy electrons (1–3 eV) in metals can be generated after surface exposure to external energy, such as the absorption of light or exothermic chemical processes. These energetic electrons are not at thermal equilibrium with the metal atoms and are called ‘‘hot electrons’’. The detection of hot electrons and understanding the correlation between hot electron generation and surface phenomena are challenging questions in the surface science and catalysis community. Hot electron flow generated on a gold thin film by photon absorption (or internal photoemission) appears to be correlated with localized surface plasmon resonance.
In this talk, I will show strategy to quantify the non-adiabatic energy transfer and detect hot electron flux during the elementary steps of the energy conversion process and catalytic reaction processes occurring at both of solid-gas and solid-liquid interfaces. To detect and utilize the hot electron flows, the nanodiodes consisting of metal catalyst film, semiconductor layers, and Ohmic contact pads were constructed It was shown that the chemicurrent or hot electron flows were well correlated with the turnover rate of CO oxidation or hydrogen oxidation separately measured by gas chromatography, suggesting the intrinsic relation between catalytic reaction and hot electron generation. We show a novel scheme of graphene catalytic nanodiode composed of a Pt NPs array on graphene/TiO2 Schottky nanodiode, which allows detection of hot electron flows induced by hydrogen oxidation on Pt NPs. By analyzing the correlation between the turnover rate (catalytic activity) and hot electron current (chemicurrent) measured on the graphene catalytic nanodiodes, we demonstrate that the catalytic nanodiodes utilizing a single graphene layer for electrical connection of Pt NPs are beneficial for the detection of hot electrons due to not only atomically thin nature of graphene but also reducing the height of the potential barrier existing at the Pt NPs/graphene interface. I will show that hot electron flow generated on a gold thin film by photon absorption (or internal photoemission) is amplified by localized surface plasmon resonance. Finally, The effect of surface plasmons on the catalytic and photocatalytic activity on metal–oxide hybrid nanocatalysts is also highlighted. These phenomena imply the efficient energy conversion from the photon energy to the chemical energy, with the potential application of hot electron-based photocatalytic devices.
댓글 0
번호 | 일시 | 장소 | 연사 | 제목 |
---|---|---|---|---|
공지 | 2019/09/18 - 12/5 | Seminar Room #1323 | Prof. David Schuster and etc. | Fall 2019: Physics Seminar Serises |
공지 | 2019/09/02 - 12/09 | Seminar Room 1501 | 이호성 박사 (한국표준과학연구원) and etc. | Fall 2019: Physics Colloquium |
138 | Sep. 26 (Tue.), 11AM | #1323 (E6-2. 1st fl.) | Dr. Yukiaki Ishida / ISSP, University of Tokyo | Time-resolved ARPES study of Dirac and topological materials |
137 | Sep. 13 (Wed.), 4 PM | #1323 (E6-2. 1st fl.) | Prof. Yi. Zhou (The Zhejiang Univ.) |
An Introduction to Quantum Spin Liquids
![]() |
136 | Sep. 12 (Tue.), 4 PM | #1323 (E6-2. 1st fl.) | Prof. Yi. Zhou (The Zhejiang Univ.) |
Exact Solution for the Interacting Kitaev Chain at Symmetric Point
![]() |
135 | AUG. 31 (Thu.), 2 PM | #5318(E6-2. 5th fl.) | Prof. Hiroaki Ishizuka (The University of Tokyo) |
“Berry phase and nonlinear response: photocurrent in noncentrosymmetric insulators and Weyl semimetals”
![]() |
134 | Aug. 16 (Wed.), 4 PM | #1322 (E6-2. 1st fl.) | Prof. Noejung Park (UNIST) |
Phonon-driven spin-Floquet valleytro-magnetism
![]() |
133 | July. 14 (Fri.), 3:00 PM | #1323 (E6-2. 1st fl.) | Dr. Jun Hyun Lee / University of Maryland |
Chiral anomaly in disordered Weyl semimetals
![]() |
132 | #1323(E6-2. 1st fl.) | Jul. 10th (Mon), 4pm | Dr. Duk Young Kim Los Alamos National Laboratory |
“Intertwined Orders in a Heavy-fermion metal”
![]() |
131 | Jun. 2 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. Euyheon Hwang(황의헌) |
Quasiparticle Interference and Fourier transform scanning tunneling spectroscopy in WTe2 (Weyl semimetal)
![]() |
130 | Jun. 2 (Fri.), 4:00 PM | #1323 (E6-2. 1st fl.) | Dr. Sang Wook Kim |
Maxwell's demon in quantum wonderland
![]() |
129 | May. 12 (Fri.), 01:30 PM | E6-2. 1st fl. #1323 | Dr. Young Kuk Kim | Topological Dirac insulator |
128 | Apr. 27, 2017 (Thu) 4:00 pm | Seminar Room(#1323, E6-2) | Prof.Donghan Lee (Chungnam National Univ.) | 반도체 양자점을 이용한 단광자 광원 |
127 | Apr. 28 (Fri.), 04:00 PM | #1323 (E6-2. 1st fl.) | Dr. Minkyung Jung Research Institute, DGIST | Carbon nanotubes coupled to superconducting impedance matching circuits |
» | Apr. 28 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. JeongYoung Park Graduate School of EEWS, KAIST | Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion |
125 | April 6, 2017 (Thu), 4:00 pm | IBS CAPP seminar room, Creation Hall (3F), KAIST Munji Campus | Prof. Youngjoon Kwon (Yonsei University) | For whom the Belle tolls |
124 | April 5th 2017, 12:00 ~ 13:00 | Room 101, Creative Learning Bldg.(E11) | Prof. Wonho Choe(Dept. of Physics),Prof. Young-chul GHIM(Dept. of Nuclear & Quantum Engineering) |
2017년 4월 첫수 융합포럼 개최 안내(물리학과 & 원자력 및 양자공학과 공동 개최)/The First Wednesday Multidisciplinary Forum in April 2017 organized by Dept. of Physics & Dept. of Nuclear & Quantum Engineering
![]() |
123 | 2017/03/06 - 05/29 | Seminar Room 1501 | 이종봉 박사 (POSTECH) 외 |
Spring 2017: Physics Colloquium
![]() |
122 | 2017/03/21 - 06/08 | Seminar Room 1323 | 조길영 박사(KAIST) 외 |
Spring 2017: Physics Seminar Serises
![]() |
121 | Mar. 24 (Fri.), 4:00 PM | #1323 (1st fl. E6-2) | Dr. SangWook Lee | Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties |