visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-07-16 16:00 
일시 2015/07/16, 4PM 
장소 E6-2, 1318 
연사 Dr. Kyunghan Hong(MIT) 

Next-generation ultrafast laser technology for nonlinear optics and strong-field physics

2015/7/16 (Thurs) 4PM, Rm 1318 (Faculty Conference Rm.)

Dr. Kyunghan Hong, MIT

 

Femtosecond high-power Ti:sapphire chirped-pulse amplification (CPA) laser technology at 800 nm of wavelength has been widely and almost exclusively used over last two decades for studying ultrafast nonlinear optics and strong-field phenomena. Recently ultrafast optical parametric chirped-pulse amplification (OPCPA) technology has made a rapid progress, so that various wavelengths are available at high intensities. The wavelength selectivity provides interesting opportunities in ultrafast nonlinear optics and strong-field phenomena driven especially at mid-infrared (MIR) wavelengths. High-harmonic generation (HHG) driven by MIR wavelengths has been proven to be a reliable way to achieve a tabletop coherent water-window soft X-ray (280-540 eV) or keV source. On the other hand, the super-continuum generation (SCG) in the MIR range is highly useful for detecting biomedical materials and air pollutants with the resonant fingerprints of the common molecules, such as H2O, CO2, CO, and NH4. The highly nonlinear laser filamentation process enables the SCG in bulk dielectrics and gases. 


In this presentation, I review our recent progress on a multi-mJ MIR (2.1 m) OPCPA system operating at a kHz repetition rate, pumped by a picosecond cryogenically cooled Yb:YAG laser. Using this novel MIR source, we demonstrate high-flux soft X-ray HHG up to the water-window range. In addition, I present the MIR filamentation in dielectrics showing 3-octave-spanning SCG and sub-2-cycle self-compression. I will also discuss novel high-energy pulse synthesizer technology based on multi-color OPCPA systems. The work presented here provides an excellent platform of next-generation strong-field laser technology.

 

Contact: HeeKyunh Ahn, Laser Science Research Lab. Tel. 2561

번호 날짜 장소 제목
431 2022-12-20 16:00  E6-2.1st fl. #1323 & zoom  Studying Baryonic Flow Across the Cosmic Scales Using Radio and Millimeter Wavelength Experiments
430 2022-12-20 16:00  E6-2. #2501  Getting into Biology and Medicine as Physicist
429 2022-12-13 11:00  E6-2 #1322  Art of thin film engineering toward topological quantum computation file
428 2022-12-09 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) Single-shot measurements of strongly-correlated artificial molecular levels in semiconductor quantum dots file
427 2022-12-07 16:00  E6-2 #1323  (광학분야 세미나) Non-Hermitian physics and non-Hermitian singularity
426 2022-11-25 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) DMFT+ NRG: From models to real materials, from local to nonlocal correlations file
425 2022-11-24 16:00  E6-2 #1323 & Zoom  Probing fundamental physics by mapping the mm and sub-mm sky
424 2022-11-18 16:00  E6-2. 1st fl. #1323 & Zoom  Qubits, new experimental tools for physics file
423 2022-11-18 14:30  E6-2. 1st fl. #1323 & Zoom  Kondo cloud condensation in a highly-doped semiconductor metal file
422 2022-11-17 16:00  E6-2 #1323  (광학분야 세미나) Ultrastructural and Spectroscopic Studies by Super-Resolution Fluorescence Microscopy
421 2022-11-11 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Honeycomb oxide heterostructures for quantum spin liquid file
420 2022-11-10 16:00  E6-2. 1st fl. #1323  Probing the Origin of Cosmic Infrared Background and Future Prospects with SPHEREx
419 2022-11-09 16:00  E6-2. 1st fl. #1323  Radio Astronomy, Radio Interferometry, and Multi-wavelength Studies on Relativistic Jets
418 2022-11-04 16:30  Zoom  초세대 협업연구실 Quantum- & Nano-Photonics_Multifunctional neural probes with integrated nanophotonics file
417 2022-11-03 16:00  E6-2 #1323  (광학분야 세미나) Single-photon emission from low-dimensional materials
416 2022-11-03 13:00  E6-2 #1323  [High-Energy Theory Seminar] Supersymmetric observables via Fermi-gas method
415 2022-10-28 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Machine-Learning-Guided Prediction models and Materials discovery for high Tc cuprates file
414 2022-10-27 16:00  E6-2 #1323  (광학분야 세미나) Cavity optomechanical systems for quantum transduction
413 2022-10-26 10:00  E6-2 #2502  Replica Higher-Order Topology of Hofstadter Butterflies in Twisted Bilayer Graphene
412 2022-10-24 16:00  E6 #1501(공동강의실)  Physics Colloquim(Fall 2022) file