visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-01-25 15:00 
일시 Jan. 25th (Tue), 15:00 
장소 E6 #1501/online 
연사 Junhyun Lee (Rutgers, the State University of New Jersey) 

 

Physics Seminar

 

 

 

 

Emulating twisted double bilayer graphene with a multiorbital optical lattice

 

 

Junhyun Lee

Department of Physics and Astronomy,

Rutgers, the State University of New Jersey

 

Jan. 25th (Tue), 15:00, E6 #1501/online

https://us02web.zoom.us/j/84917344494?pwd=ZlBaNWNhVlYwYUY5RnRoQ2Q2MWp0dz09

회의 ID:  849 1734 4494

암호: 890800

 

We theoretically explores how to emulate twisted double bilayer graphene with ultracold atoms in multiorbital optical lattices. In particular, the quadratic band touching of Bernal stacked bilayer graphene is emulated using a square optical lattice with px, py, and dx2y2 orbitals on each site, while the effects of a twist are captured through the application of an incommensurate potential. The quadratic band touching is stable until the system undergoes an Anderson like delocalization transition in momentum space, which occurs concomitantly with a strongly renormalized single particle spectrum inducing flat bands, which is a generalization of the magic-angle condition realized in Dirac semimetals. The band structure is described perturbatively in the quasiperiodic potential strength, which captures miniband formation and the existence of magic-angles that qualitatively agrees with the exact numerical results in the appropriate regime. We identify several magic-angle conditions that can either have part or all of the quadratic band touching point become flat. In each case, these are accompanied by a diverging density of states and the delocalization of plane wave eigenstates. It is discussed how these transitions and phases can be observed in ultracold atom experiments.

 

Contact: Eunjung Jo, (jojo@kaist.ac.kr)

 

Department of Physics, KAIST

 

번호 날짜 장소 제목
347 2015-12-03 16:00  E6-2, #1323  Hybrid solid state spin qubits in wide bandgap semiconductors
346 2022-06-10 16:00  E6-2. 1st fl. #1323  Fe5GeTe2의 나선형 자성특성과 자기저항의 전류밀도 의존성 연구 file
345 2017-03-24 16:00  #1323 (1st fl. E6-2)  Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties
344 2016-09-29 16:00  E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches
343 2015-07-15 14:00  E6-2,1323  Electronic and optical properties of titanate-based oxide superlattices
342 2019-06-17 10:30  #1323, E6-2  Chiral Spintronics file
341 2019-04-19 16:00  E6-2. 1st fl. #1323  Graphene and hBN heterostructures file
340 2023-09-21 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP seminar] Axion Magnetic Resonance file
339 2023-10-11 16:00  E6-2, Rm2502  [High Energy Theory Seminar] Axion Magnetic Resonance
338 2016-01-26 14:00  E6-2, #1323  Electrochemistry on Nano- and Atomic Levels: Scanning Probe Microscopy Meets Deep Data
337 2019-03-29 14:30  E6-2. 1st fl. #1323  Epitaxial Multifunctional Oxide Thin Films for Novel Electronics file
336 2018-06-01 11:00  E6-2. 1st fl. #1323  Topological phases in low-dimensional quantum materials file
335 2019-10-29 16:00  #1323 (E6-2, 1st fl.)  Particles and Gravity via String Geometry file
334 2018-04-09 11:00  E6-2. 1st fl. #1323  Doublon-holon origin of the subpeaks at the Hubbard band edges file
333 2019-10-31 10:00  #1323 (E6-2, 1st fl.)  Kondo meets Hubbard: Impurity physics for correlated lattices file
332 2022-06-10 14:30  E6-2. 1st fl. #1323  Combinatorial strategy for condensed matter physics: study on rare earth hexaborides thin films file
331 2020-02-13 16:30  E6-6, #119  Enhanced Light-Matter Interactions in Graphene with Noble Metal Plasmonic Structures file
330 2019-11-20 16:00  #5302, E6-2  Correlation between superconducting transition temperature and critical current density in irradiated iron-based superconductors file
329 2019-11-05 16:00  #1323, E6-2  Study on nanomaterials by the development of ultrahigh resolution laser-photoelectron microscopy (PEEM) file
328 2021-12-03 14:30  Zoom webinar  Topological Spin Textures: Skyrmions and Beyond file