visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Quantum electron optics using flying electrons

2017.01.26 23:43

Physics 조회 수:2866

날짜 2017-02-01 14:00 
일시 Feb. 1 (Wed.), 2p.m. 
장소 #1323(E6-2. 1st fl.) 
연사 Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo 

Quantum electron optics using flying electrons

 

Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo

Feb. 1 (Wed.), 2p.m.  #1323(E6-2. 1st fl.)

 

Abstract: Quantum electron optics is a field in which one manipulates quantum states of propagating electrons. Combined with technologies for confining and manipulating single electrons, it allows us to investigate the scattering and interference of electrons in a unit of a single electron. The necessary elements of quantum electron optics experiments include single electron beam splitter, phase shifter, Coulomb coupler, single electron source and detector, spin-orbit path and electron-pair splitter.

In this talk, we present development of some of these elements. The beam splitter and phase shifter are implemented in our original two-path interferometer [1-3]. This interferometer has been shown to be the only reliable system for the measurement of the transmission phase shift of electrons [4,5]. To suppress decoherence induced by the electron-electron interaction and enhance the interference visibility, we recently developed a two-path interferometer of depleted channels, where single electrons are injected by means of surface acoustic waves (SAWs). We also confirmed that a single electron in a static quantum dot (single electron source) can be adiabatically transferred into a SAW-driven moving quantum dot [6], a necessary ingredient for achieving the high interference visibility of a single flying electron.

Quantum electron optics also targets the manipulation of spins of flying single electrons. We found that the spin information of one or two electrons can be transferred between distant quantum dots, which work as the single electron source and detector, with the fidelity limited only by the spin flips prior to the spin transfer [7,8]. We also realized an electron-pair splitter that can be used to split spin-entangled electrons in a moving dot into different moving dots. Combined with single spin manipulation using the spin-orbit interaction (spin-orbit path) [9], this splitter should allow for Bell measurement of electron spins.

This work is in collaboration with S. Takada (now at Institut Neel), R. Ito and K. Watanabe at the University of Tokyo, B. Bertrand, S. Hermelin, T. Meunier, and C. Bäuerle at Institut Neel, and A. Ludwig and A. D. Wieck at Ruhr-Universität Bochum.

 

[1] M. Yamamoto et al., Nature Nano. 7, 247 (2012)..

[2] A. Aharony et al., New J. Phys. 16, 083015 (2014).

[3] T. Bautze et al., Phys. Rev. B 89, 125432 (2014).

[4] S. Takada et al., Phys. Rev. Lett. 113, 126601 (2014).

[5] S. Takada et al., Appl. Phys. Lett. 107, 063101 (2015).

[6] B. Bertrand et al., Nanotechnology 27, 204001 (2016).

[7] S. Hermelin et al., Nature 477, 435 (2011).

[8] B. Bertrand et al., Nature Nano. 11, 672 (2016).

[9] H. Sanada et al., Nature Phys. 9, 280 (2013).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)

 

 

Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 장소 제목
509 2023-05-19 11:00  E6-2 #1323  (응집물리 세미나)Dipole condensations in Tilted Bose-Hubbard Chains
508 2015-10-14 18:00  KAIST Munji Campus Supex Hall  인터스텔라 영화 속의 물리 file
507 2022-03-28 16:00  E6, #1501  Ultimate-density atomic semiconductor via flat bands
506 2009-09-07 16:00  E6, 1501  Physics Colloquium : 2009 Fall file
505 2018-11-08 16:00  #1323, E6-2  Conformality lost file
504 2017-03-06 16:00  Seminar Room 1501  Spring 2017: Physics Colloquium file
503 2014-05-28 17:00  KI Building, Matrix Hall  부품소재산업이 미래다
502 2022-11-25 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) DMFT+ NRG: From models to real materials, from local to nonlocal correlations file
501 2022-03-21 16:00  E6, #1501  Multi-wavelength Studies on Relativistic Jets from Gamma-ray Bright Active Galactic Nuclei
500 2023-03-16 16:00  E6-2 #1323  (광학분야 세미나) Investigation of 3D cell mechanics using refractive-index tomography
499 2018-08-01 11:00  양분순 빌딩 (E16-1) 207호  Future of AI: Is the brain a computer? file
498 2022-09-23 11:00  E6-2 #1323  [Update 세미나 영상] (응집물리 세미나) Steady Floquet-Andreev states in graphene Josephson junctions file
497 2020-09-11 14:00  zoom  SRC Seminar file
496 2023-03-17 11:00  E6-2 #1323  (응집물리 세미나)Operando electron microscopy investigation of domain dynamics in twisted van der Waals materials file
495 2022-12-07 16:00  E6-2 #1323  (광학분야 세미나) Non-Hermitian physics and non-Hermitian singularity
494 2022-05-02 16:00  E6, #1501  What can we learn from the history of science and technology?(우리말강의)
493 2022-04-28 16:00  E6 1323  (광학분야 특별세미나)Adiabaticity and symmetry in optical waveguide design
492 2024-04-19 15:00  E6-1, #1501  Engineering Physics for Semiconductor Equipment Innovation file
491 2009-02-23 16:00  E6, 1501  Physics Colloquium : 2009 Spring file
490 2014-03-10 16:00  E6, 1501  Physics Colloquium : 2014 Spring file