visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 E6-2. 1st fl. #1323 
일시 Oct. 18 (Tue.), 3PM 
연사 Dr. JunHo Suh, Korea Research Institute of Standards and Science 

“Hybrid quantum systems with mechanical oscillators”

 

Dr. JunHo Suh, Korea Research Institute of Standards and Science
Oct. 18 (Tue.), 3PM, E6-2. 1st fl. #1323

 

Abstract:

Quantum machines are actively pursued to harness quantum coherence and entanglement as new resources for information processing and precision sensing. Among those activities, hybrid quantum systems are recognized as a promising platform for building multi-functional quantum machines by connecting quantum states in different physical domains, and mechanical oscillators are accepted as important components in the quantum hybrids[1]. In this talk, I review recent examples of hybrid quantum systems involving mechanical oscillators strongly coupled to electrons and photons. In the first part, a quantum electro-mechanical system is introduced. A cooper-pair box qubit is electrostatically coupled to a nanomechanical oscillator. A dispersive measurement of qubit states is achievable through high-quality read-out of nanomechanical motion, which also maintains qubit coherence proved via microwave spectroscopy and Landau-Zener interference. In the second part, mechanical oscillators coupled to microwave photons, or "quantum opto-mechanical systems", are described, where radiation pressure mediates the interaction between photons and the mechanical oscillator.  Photons act as a probe for mechanical motion in this case, and a fundamental limit in measurement sensitivity arises due to Heisenberg's uncertainty principle, as known as quantum standard limit(SQL). By carefully measuring mechanical motion in quadratures, we identify the fundamental back-action from photons which mandates SQL, and also demonstrate a novel scheme known as quantum non-demolition measurement (QND) which allows a precise measurement without back-action in one quadrature of motion[3]. When the coupling between the microwave photons and mechanical motion is strong enough, the back-action from photons start modifying quantum noise in mechanical oscillators and produced mechanical quantum squeezed states[4,5]. Finally, it is expected that one could approach ultra-strong coupling regime as photon-mechanical oscillator coupling strength increases, where single photon coupled to mechanical motion dominates the hybrid system. Mechanical states in the ultra-strong coupling limit deviate from well-known number states which could open a new paradigm for controlling mechanical quantum states[6]. A quantum dot system embedded in a nanowire is proposed to be a candidate to reach this interesting regime, and our recent progress toward this direction is dissussed.

 

[1] Kurizki et.al., PNAS 112, 3866-3873 (2015).
[2] LaHaye et.al., Nature 459, 960-964 (2009).
[3] Suh et.al., Science 344, 1262-1265 (2014).
[4] Wollman et.al., Science 349, 952-955 (2015).
[5] Lei et.al., PRL 117, 100801 (2016).
[6] Nation et.al., PRA 93, 022510 (2016).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)
Center for Quantum Coherence in Condensed Matter, KAIST

번호 일시 장소 연사 제목
공지 2019/09/18 - 12/5  Seminar Room #1323  Prof. David Schuster and etc.  Fall 2019: Physics Seminar Serises
공지 2019/09/02 - 12/09  Seminar Room 1501  이호성 박사 (한국표준과학연구원) and etc.  Fall 2019: Physics Colloquium
154 Jan.9 (Wed.), 04:00 PM  E6-2. 2nd fl. #2501  Dr. Heung-Sik Kim  Molecular Mott state in the deficient spinel GaV4S8 file
153 January 17 (Fri), 4:00 PM  #1323, E6-2  Hiroki Ikegami  Symmetry Breaking and Topology in Superfluid 3He file
152 January 23, 2019  Rm. C303, Creation Hall (3F), Munji Campus  Mikko Mottonen  Ultrasensitive Microwave Bolometer: Opportunity for Axion Detectors file
151 Jul 3rd, 2019 (Wed)  E6-2, 2501  Kyung Soo Choi  Many-body quantum electrodynamis (QED) with atoms and photons: A new platform for quantum optics" file
150 Jul. 07 (Thu.) 2PM  #1323(E6-2. 1st fl.)  Dr. Eun Ah Kim, CORNELL UNIV.  Let there be topological superconductors
149 Jul. 08 (Fri.) 11:00 AM  #1323(E6-2. 1st fl.)  Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.)  Isostatic magnetism
148 Jul. 08 (Fri.) 2PM  #1323(E6-2. 1st fl.)  Dr. Junhyun Lee, Harvard University  Electronic quasiparticles in the quantum dimer model
147 Jul. 28 (Thu.) 4PM  #1323(E6-2. 1st fl.)  Prof. Johannes Pollanen, Jerry Cowen Chair of Experimental Physics at Michigan State University  Low Dimensional Electrons: On the Road to Hybrid Quantum Systems
146 July 10 (Wed.), 04:00 PM-  Academic Cltural Complex (E9) 5층 스카이라운지  Prof. Sidney Nagel/Young-Kee Kim  Public Lectures file
145 July 13, 2018 at 14:00  Room 5318, KAIST Natural Sciences Lecture Hall(E6).  Prof. Ian Lewis (The University of Kansas, Department of Physics & Astronomy)  Loop Induced Single Top Partner Production and Decay at the LHC
144 July 2, 2020 (Thursday)  Zoom Video Conference Seminar  Dr. Emmanuel Flurin (CEA Saclay)  An irreversible qubit-photon coupling for the detection of itinerant microwave photons file
143 July 2. 2018 (Monday) 3:00 PM  Seminar Room (C303), Creation Hall (3F), KAIST Munji Campus  Dr. Peter Winter (Argonne National Laboratory)  High Precision Magnetic Field Measurement for the Muon g-2 Experiment file
142 July 21 - August 2  E6-2,# 5318  Junmou Chen/Thomas Flacke/Kaoru Hagiwara/Junichi Kanzaki/Chris Kelso/Jeong Han Kim/Kyoungchul Kong/Gabriel Lee/Hye-Sung Lee/Ian Lewis  Challenges and Opportunities in Theoretical Particle Physics 2019 file
141 July 25(Thur.),4:00PM  E6-2, #1323  Prof.Bohm-Jung Yang  Band topology of twisted bilayer graphene file
140 July 26, 2018 at 14:00  Room 5318, KAIST Natural Sciences Lecture Hall(E6).  Manki Kim (Department of Physics, Cornell University)  Inflation in String Theory and Backreaction file
139 July 27, 2018 at 15:00  Room 5318, KAIST Natural Sciences Lecture Hall(E6).  Dr. Hyejung Kim(Technische University Dresden)  Muon g-2 in the 2HDM and MSSM: comprehensive numerical analysis and absolute maxima file
138 July 30 (Tue), 4:00 PM  #1323, E6-2  Dr. Mingu Kang  Dirac fermions and flat bands in correlated kagome metals file
137 July 31(Wed.)/ 16:00  E6-2, #1323  Dr. Ivan Borzenets  Features of ballistic superconducting graphene file
136 July 8(Mon), 14:00  E6, #1322  T. L. M. Guedes (Univ. of Konstanz)  Ultrabroadband squeezed pulses and their relation to relativity file
135 July 9 (Mon.), 14:00 PM  #1323, E6-2  Prof. Cesar A. Hidalgo, MediaLab, MIT  The principles of collective learning file