Entanglement probe of two-impurity Kondo physics
2016.09.19 16:01
장소 | E6-2. #2502(2nd fl.) |
---|---|
일시 | 4pm, Sep. 21 (Wed. |
연사 | Dr. Henrik Johannesson , University of Gothenburg (Sweden) and Beijing Computational Science Research Center (China) |
Entanglement probe of two-impurity Kondo physics
4pm, Sep. 21 (Wed.), E6-2. #2502(2nd fl.)
Dr. Henrik Johannesson , University of Gothenburg (Sweden) and Beijing Computational Science Research Center (China)
The two-impurity Kondo model has bearings on a number of topical problems, from heavy-fermion physics to spin-based quantum computing. In this talk I will review what is known about the model and also present a novel approach to its study, initiated in a collaboration with A. Bayat, S. Bose, and P. Sodano [1]. Specifically, we propose that real-space properties of the model can be obtained from an effective spin model where two single-impurity Kondo spin chains are joined via an RKKY interaction between the two impurity spins. We then use the Density Matrix Renormalization Group (DMRG) to study its features, using two complementary quantum-entanglement measures, the negativity and the von Neumann entropy. This nonperturbative approach enables us to uncover the Kondo screening cloud and its enhancement in the limit of large ferromagnetic RKKY coupling, thus corroborating a long-standing conjecture of ”Kondo resonance narrowing" for effectively large impurity spins. In a follow-up work [2], we extended our approach to study the entanglement spectrum of the model, and obtained the Schmidt gap, i.e. the difference between the two largest eigenvalues of the reduced density matrix. The Schmidt gap is found to signal the quantum phase transition between the Kondo and RKKY phases, in effect serving as an order parameter, correctly predicting the known scaling exponent for the Kondo crossover length at the critical point. Time permitting, I will briefly discuss also some more recent applications of our approach, to the study of local quantum quenches [3], the entanglement structure of the two-channel Kondo model [4], and impurity quantum thermodynamics [5].
[1] A. Bayat et al., Phys. Rev. Lett. 109, 066403 (2012)
[2] A. Bayat et al., Nat. Comm. 5, 3784 (2014)
[3] A. Bayat et al., Phys. Rev. B 92, 155141 (2015)
[4] B. Alkurtass et al., Phys. Rev. B 93, 081106(R) (2016)
[5] A. Bayat et al., Phys. Rev. B 93, 201106(R) (2016)
Contact: Heung Sun Sim, Physics Dept., (hs_sim@kaist.ac.kr)
댓글 0
번호 | 일시 | 장소 | 연사 | 제목 |
---|---|---|---|---|
236 | May. 11 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. Kun Woo Kim |
Disordered Floquet topological insulators
![]() |
235 | May. 11 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Nam Kim |
암페어 단위 재정의와 단전자 펌프 소자 개발
![]() |
234 | May. 17 (Thu.), 01:30 PM | E6-2. 1st fl. #1323 | Prof. Yong-Baek Kim University of Toronto |
Quantum Spin Liquid in Kitaev Materials
![]() |
233 | Jun. 01 (Fri.), 11:00 AM | E6-2. 1st fl. #1323 | Dr. Seung Sae Hong |
Topological phases in low-dimensional quantum materials
![]() |
232 | Nov. 9 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. Pilkyung Moon |
Moiré superlattices – from twisted bilayer graphene to quasicrystal
![]() |
231 | Nov. 9 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Donghun Lee |
Quantum sensing and imaging with diamond defect centers for nano-scale spin physics
![]() |
230 | Dec. 7 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. Gyung Min Choi |
Spin generation from heat and light in metals
![]() |
229 | Dec. 7 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Joon Ho Jang |
Novel probes of interacting electrons in 2D systems
![]() |
228 | DEC. 11 (Tue), 04:00 PM | E6-2. 1st fl. #1323 | Prof. Hiroshi Shinaoka |
Natural compact representation of Matsubara Green’s functions: applications to analytic continuation and quantum many-body simulations
![]() |
227 | DEC. 16~18 (Sun~Tue) | E6-2. 1st fl. #1323 | Prof. Keisuke Totsuka |
Lectures on 2d Conformal Field Theory
![]() |
226 | Dec. 26 (Wed.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Isaac H. Kim |
Brane-like defect in 3D toric code
![]() |
225 | DEC. 27 (Thu), 04:00 PM | E6-2. 1st fl. #1323 | Prof. Na Young Kim |
Quantum Innovation (QuIN) Laboratory
![]() |
224 | Mar. 29 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. Seung Hyub Baek |
Epitaxial Multifunctional Oxide Thin Films for Novel Electronics
![]() |
223 | Mar. 29 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Taeyoung Choi |
Coherent Quantum Control and Magnetism on atoms – Trapped ion and ESR STM
![]() |
222 | Apr. 19 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Seok Kyun Son |
Graphene and hBN heterostructures
![]() |
221 | Apr. 19 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. YoungWoo Nam |
A family of finite-temperature electronic phase transitions in graphene multilayers
![]() |
220 | Sep. 10 (Tue.), 03:00 PM | E6-2. 1st fl. #1323 | Dr. Mikhail Kiselev |
Two-Stage Kondo Effect
![]() |
219 | Sep. 27 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Jindong Song |
0D/1D/2D/3D III-V materials grown by MBE for Optelectronics
![]() |
218 | Sep. 27 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. Joon Sue Lee |
Spin-charge conversion in topological insulators for spintronic applications
![]() |
217 | Nov. 1 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. YoungWook Kim |
Squeezing the best out of 2D materials
![]() |